Амины аминокислоты белки амины амины алифатического. Лекция на тему: "Амины

они же полипептиды, они же протеины

Ф.Энгельс биологом не был, но дал такое определение жизни:

Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка

Конечно, это определение не научное и не затрагивает очень многие , но определяет один самый важный момент —

жизнь на земле белковая

Строение и функции белков

Белки — полимеры, мономерами которых являются аминокислоты. В составе белков всего 20 аминокислот, а вот комбинаций этих аминокислот может быть очень много! За счет этого достигается разнообразие. Поэтому белков в природе огромное количество!

Белковый состав так и записывается — последовательностью аминокислот, которые обозначаются тремя буквами:

То, что показано на рисунке — последовательность аминокислот — это целая длинная большая молекула (то, что приведено здесь — это очень маленький белок, обычно такие молекулы на порядок длиннее).

В теме про аминокислоты мы уже рассмотрели механизм образования такого полимера — полипептида.

Белки делят на:

  • простые — состоят только из аминокислот;
  • сложные — кроме аминокислот содержат вещества небелковой природы.

Первичная структура (конформация) белка

— это именно эта последовательность — то, какие аминокислоты и в какой последовательности они соединены ковалентными связями.

Вторичная структура белка

Это спираль , которая образуется уже за счет межмолекулярных — водородных связей.

Третичная структура белка

Эта структура образована свернутыми спиралями — такое образование называется

Четвертичная структура белка

это совместное объединение нескольких схожих по строению третичных белковых структур (глобул или субъединиц) в единую молекулу с приобретением ею природных свойств.

Сами глобулы в этой структуре называют протомерами, а само четвертичное образование — мультимером .

Белки довольно легко подвергаются разрушению. Сначала «ломается» четвертичная, потом третичная, потом уже вторичная структура. Разрушить первичную структуру сложнее. Это уже, скорее, химическое взаимодействие.

Разрушение структур белка называется денатурацией . Свойства белка при этом теряются.

Самые известные денатуранты -температура (нагревание), спирт, кислоты и щелочи.

Простой и повседневный пример денатурации — яичница! 🙂

АМИНЫ

Производные аммиака, в молекулах которых один или несколько атомов водорода замещены углеводородными радикалами:

CH 3 - NH 2 C 2 H 5 - NH 2 C 3 H 7 - NH 2

метиламин этиламин пропиламин

Группа - NH 2 называется аминогруппой . Амины - органические основания.

Наибольшее практическое значение имеет ароматический амин - анилин.

Анилин C 6 H 5 -NH 2 (фениламин).

Анилин представляет собой бесцветную маслянистую жидкость с характерным запахом. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит. Анилин более слабое основание, чем амины предельного ряда.

1. Аминосоединения. Классификация, изомерия, названия и физические свойства

2. Химические свойства аминов. Основность аминов (Загорский В.В.)

3. Особенности свойств анилина. Получение и применение аминов

Теоретический материал по теме "Амины" можно посмотреть

ПРОВЕРЬТЕ СЕБЯ:

тест "Номенклатура аминов"

АМИНОКИСЛОТЫ

Азотосодержащие органические вещества, молекулы которых содержат карбоксильную группу - COOH и аминогруппу - NH 2 .

NH 2 -CH 2 -COOH NH 2 -CH 2 -CH 2 -COOH

аминоуксусная кислота β-аминопропиновая кислота

Аминокислоты и пептиды в промышленности и медицине

Ежегодно в мире производится более 200 тыс. тонн аминокислот, которые используются в основном как пищевые добавки и компоненты кормов для скота. Традиционным промышленным методом их получения является ферментация, однако все большее значение приобретают химические и особенно ферментативные методы синтеза различных аминокислот. Наибольший удельный вес в промышленном получении аминокислот имеет лизин и глутаминовая кислота, в больших количествах производят также глицин и метионин. Аминокислоты, особенно незаменимые, т.е не синтезирующиеся в организме, представляют большой интерес в первую очередь для медицины и пищевой промышленности. Фенилаланин является предшественником ряда гормонов, осуществляющих многие регуляторные реакции в организме, метионин - основной донор метильных группировок при синтезе адреналина, креатина, а также источник серы при образовании тиамина, Валин участвует в синтезе пантотеновой кислоты, треонин - предшественник витамина В12 и т.д. Следовательно, дефицит аминокислот, способствующий нарушению многих обменных процессов, должен восполняться за счет введения соответствующих экзогенных аминокислот.

Аминокислоты как лекарственные вещества

Аминокислоты широко применяются в медицинской практике. В первую очередь это относится к таким аминокислотам как метионин, гистидин, глутаминовая и аспарагиновая кислоты. В последние годы список аминокислот - лекарственных препаратов - существенно расширился. В него входят аргинин, ароматические аминокислоты, цистеин и некоторые другие.

Аргинин в сочетании с аспартатом или глутаматом помогает при заболевании печени. K-Na-аспартат снимает усталость и облегчает боли в сердце, его рекомендуют при заболевании печени и диабете. Цистеин защищает SH-ферменты в печени и других тканях от окисления и оказывает детоксицирующее действие. Он проявляет также защитное действие от повреждения, вызываемых облучением. Дигидроксифенилаланин и D-фенилаланин эффективны при болезни Паркинсона. Из полиаминокислот получают хороший материал для хирургии.

Глутаминовая кислота используется в психиатрии при эпилепсии и особенно в детской психиатрии для лечения слабоумия и последствий родовых травм. Кроме того, её применяют в комплексной терапии язвенной болезни и при гипоксии. Весьма эффективным лекарственным препаратом является производное глутаминовой кислоты - гамма-аминомасляная кислота, или ГАМК. Она образуется из глутаминовой кислоты в результате декарбоксилирования при помощи фермента 4-аминобутират: 2- оксиглутаратаминотрансферазы в присутствии пиридоксальфосфата. ГАМК тормозит передачу нервного импульса в синапсах центральной нервной системы. На основе ГАМК создан лекарственный препарат гаммалон (аминолон), применяемый при нарушениях мозгового кровообращения после инсульта, при атеросклерозе мозговых сосудов, потере памяти.

Аспарагиновая кислота способствует повышению потребления кислорода сердечной мышцей. В кардиологии применяют панангин - препарат, содержащий аспартат калия и аспартат магния. Панангин применяют для лечения различного рода аритмий, а также ишемической болезни сердца.

Метионин защищает организм при отравлении бактериальными эндотоксинами и некоторыми другими ядами, в связи с этим используется для защиты организма от токсикантов окружающей среды. Обладает радиопротекторным свойством.

Глицин , подобно ГАМК, является медиатором торможения в ЦНС. В медицинской практике применяется для лечения алкоголизма. Производное глицина - бетаин- является эффективным гепатопротекторным препаратом, улучшает процессы пищеварения.

Эффективным представляется использование аминокислот как пищевых добавок, имеющее двоякое значение: в качестве лечебных компонентов, а также для улучшения питательной ценности пищевых продуктов и придания им оптимальных вкусовых свойств.

Аминокислоты в сельском хозяйстве

Аминокислоты в сельском хозяйстве аминокислоты применяются преимущественно в качестве кормовых добавок. Многие растительные белки содержат лизин в очень малых количествах, поэтому добавление лизина в корма сельскохозяйственных животных с целью их сбалансирования по белковому питанию имеет первостепенное значение. Кроме того, в сельском хозяйстве аминокислоты применяются для защиты растений от различных болезней (метионин, глутаминовая кислота, валин), некоторые из аминокислот, как аланин и глицин, обладают гербицидным действием и используются для защиты растений от сорняков.

Введение в такие аминокислоты, как глутаминовая или аспарагиновая кислоты, гидрофобных группировок дает возможность получать поверхностно-активные вещества (ПАВ), широко используемые в синтезе полимеров, а также при производстве моющих средств, эмульгаторов, добавок к к моторному топливу.

Аминокислоты как косметические средства

Шампуни и крема с добавками аминокислот более эффективно поддерживают нормальные функции кожи, благотворно сказываются на качестве волос.

Применение аминокислот постоянно расширяется и лимитируется только необходимой степенью очистки и высокой стоимостью производства.

В последние годы внимание многих исследователей обращено к регуляторным пептидам в связи с открывшимися возможностями медицинского их применения в качестве лекарственных препаратов, имитирующих действие эндогенных регуляторов организма.

Теоретический материал по теме "Аминокислоты"

БЕЛКИ

- высокомолекулярные органические соединения, состоящие из остатков α -аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин - 36 000, гемоглобин - 152 000, миозин - 500 000. Для сравнения: молекулярная масса спирта - 46, уксусной кислоты - 60, бензола - 78.

Видео урок Белки

По теме "Белки" информацию можно прочитать:

1. http://biofile.ru/bio/21838.html

2. http://biofile.ru/bio/20913.html

ПРОВЕРЬТЕ СЕБЯ:

Амины. Аминокислоты. Белки. Строение и биологическая функция белков.

Амины

Амины – это производные аммиака, в котором один, два или все три атома водорода замещены органическими радикалами.

Строение и свойства аминов.

Известно много органических соединений, в которые азот входит в виде остатка аммиака, например: 1) метиламин СН 3 -NН 2 ; 2) диметиламин СН 3 -NH-СН 3 ; 3) фениламин (анилин) С 6 Н 5 -NН 2 ; 4) метилэтиамин СН 3 -NН-C 2 H 5 .

Все эти соединения относятся к классу аминов.

Сходство аминов с аммиаком не только формальное. Они имеют и некоторые общие свойства.

1. Низшие представители аминов предельного ряда газообразны и имеют запах аммиака.

4СН 3 -NH 2 + 9O 2 → 4СO 2 + 10Н 2 О + 2N 2 .

2. Если амин растворить в воде и раствор испытать лакмусом, то появится щелочная реакция, как и в случае аммиака.

3. Амины имеют характерные свойства оснований.

4. Сходство свойств аминов и аммиака находит объяснение в их электронном строении.

5. В молекуле аммиака из пяти валентных электронов атома азота три участвуют в образовании ковалентных связей с атомами водорода, одна электронная пара остается свободной.

6. Электронное строение аминов аналогично строению аммиака.

7. У атома азота в них имеется также неподеленная пара электронов. В неорганической химии к основаниям относятся вещества, в которых атомы металла соединены с одной или несколькими гидроксильными группами. Но основания – понятие более широкое. Свойства их противоположны свойствам кислот.

8. Амины называются еще органическими основаниями.

9. Являясь основаниями, амины взаимодействуют с кислотами, при этом образуются соли.

Эта реакция аналогична реакциям аммиака и также заключается в присоединении протона.

Но при сходстве свойств этих веществ как оснований между ними имеются и различия :

а) амины – производные предельных углеводородов – оказываются более сильными основаниями, чем аммиак;

б) они отличаются от аммиака лишь наличием в молекулах углеводородных радикалов, поэтому видно влияние этих радикалов на атом азота;

в) в аминах под влиянием радикала – СН 3 электронное облако связи С-N смещается несколько к азоту, электронная плотность на азоте возрастает, и он прочнее удерживает присоединенный ион водорода;

г) гидроксильные группы воды от этого становятся более свободными, щелочные свойства раствора усиливаются.

Аминокислоты

Среди азотсодержащих органических веществ имеются соединения с двойственной функцией. Особенно важными из них являются аминокислоты.

Строение и физические свойства.

1. Аминокислоты – это вещества, в молекулах которых содержатся одновременно аминогруппа NН 2 и карбоксильная группа – СООН.

Например: NH 2 -CH 2 -COOH – аминоуксусная кислота, CH 3 -CH(NH 2 )-COOH – аминопропионовая кислота.

2. Аминокислоты – это бесцветные кристаллические вещества, растворимые в воде.

3. Многие аминокислоты имеют сладкий вкус.

4. Аминокислоты можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой. При этом аминогруппа может находится у разных атомов углерода, что обусловливает один из видов изомерии аминокислот.

Некоторые представители аминокислот:

1) аминоуксусная кислота Н 2 N-СН 2 -СООН;

2) аминопропионовая кислота Н 2 N-СН 2 -СН 2 -СООН;

3) аминомасляная кислота Н 2 N-СН 2 -СН 2 -СН 2 -СООН;

4) аминовалериановая кислота Н 2 N-(СН 2 ) 4 -СООН;

5) аминокапроновая кислота Н 2 N-(СН 2 ) 5 -СООН.

5. Чем больше атомов углерода в молекуле аминокислоты, тем больше может существовать изомеров с различным положением аминогруппы по отношению к карбоксильной группе.

6. Чтобы в названии изомеров можно было указывать положение группы – NH 2 по отношению к карбоксилу, атомы углерода в молекуле аминокислоты обозначаются последовательно буквами греческого алфавита: а) α-аминокапроновая кислота; б) β-аминокапроновая кислота.

Особенности строения аминокислот заключаются в изомерии, которая может быть обусловлена также разветвлением углеродного скелета, а также строением своей углеродной цепи.

Способы применения аминокислот:

1) аминокислоты широко распространены в природе;

2) молекулы аминокислот – это те кирпичики, из которых построены все растительные и животные белки; аминокислоты, необходимые для построения белков организма, человек и животные получают в составе белков пищи;

3) аминокислоты прописываются при сильном истощении, после тяжелых операций;

4) их используют для питания больных, минуя желудочно-кишечный тракт;

5) аминокислоты необходимы в качестве лечебного средства при некоторых болезнях (например, глутаминовая кислота используется при нервных заболеваниях, гистидин – при язве желудка);

6) некоторые аминокислоты применяются в сельском хозяйстве для подкормки животных, что положительно влияет на их рост;

7) имеют техническое значение: аминокапроновая и аминоэнантовая кислоты образуют синтетические волокна – капрон и энант.

Белки

Белки – это сложные высокомолекулярные природные соединения, построенные из L-аминокислот.

Белки в природе:

1) белки представляют наиболее важную составную часть организмов;

2) они содержатся в протоплазме и ядре всех растительных и животных клеток и являются главными носителями жизни;

3) по определению Ф. Энгельса, «жизнь есть способ существования белковых тел»;

4) молекулярная масса белков выражается десятками и сотнями тысяч, а у некоторых белков достигает нескольких миллионов.

Функции белков в организме многообразны.

1. Белки служат тем пластическим материалом, из которого построены опорные, мышечные и покровные ткани.

2. С помощью белков осуществляется перенос веществ в организме, например доставка кислорода из легких в ткани и выведение образовавшегося оксида углерода (IV).

3. Белки-ферменты катализируют в организме многочисленные химические реакции.

4. Гормоны (среди них есть вещества белковой природы) обеспечивают согласованную работу органов.

5. В виде антител, вырабатываемых организмом, белки служат защитой от инфекции. Различных белковых веществ в организме тысячи, и каждый белок выполняет строго определенную функцию.

6. Для любой химической реакции, протекающей в организме, существует свой отдельный белок-катализатор (фермент).

Состав и строение белков.

1. При гидролизе любого белка получается смесь L-аминокислот, причем наиболее часто встречаются в составе белков двадцать аминокислот.

2. Молекулы аминокислот содержат в радикале группы атомов: – SH, – ОН, – СООН, – NH 2 и даже бензольное кольцо.

Аминокислотами называются карбоновые кислоты, в углеводородном радикале которых один или несколько атомов водорода замещены аминогруппами. В зависимости от взаимного расположения карбоксильной и аминогрупп различают a-, b-, g- и т.д. аминокислоты. Например,

b
CH3- a
CH-COOH a- аминопропионовая кислота
I
NH2

b
CH2-
I
NH2 a
CH2-COOH b- аминопропионовая кислота

Чаще всего термин "аминокислота" применяют для обозначения карбоновых кислот, аминогруппа которых находится в a- положении, т.е. для a- аминокислот. Общую формулу a- аминокислот можно представить следующим образом:

H2N-
CH-COOH
I
R

В зависимости от природы радикала (R) - аминокислоты делятся на алифатические, ароматические и гетероциклические.

В таблице представлены важнейшие - аминокислоты, входящие в состав белков.

Таблица. Важнейшие a- аминокислоты

Аминокислота Сокращенное (трехбуквенное) название
аминокислотного остатка в
макромолекулах пептидов и белков.
Строение R
Алифатические
Глицин H-
Аланин CH 3 -
Валин* (CH 3 ) 2 CH-
Лейцин* (CH 3 ) 2 CH-CH 2 -
Изолейцин* CH 3 -CH 2 -CH-
I
CH 3
Содержащие OH- группу
Серин HO-CH 2 -
Треонин* CH 3 -CH(OH)-
Содержащие COOH- группу
Аспарагиновая HOOC-CH 2 -
Глутаминовая HOOC-CH 2 -CH 2 -
Содержащие NH 2 CO- группу
Аспарагин NH 2 CO-CH 2 -
Глутамин NH 2 CO-CH 2 -CH 2 -
Содержащие NH 2 - группу
Лизин* NH 2 -(CH 2 ) 3 -CH 2 -
Аргинин NH 2 -C-NH-(CH 2 ) 2 -CH 2 -
II
NH
Серусодержащие
Цистеин HS-CH 2 -
Метионин* CH 3 -S-CH 2 -CH 2 -
Ароматические
Фенилаланин*
Тирозин
Гетероциклические
Триптофан*
Гистидин
Иминокислота
Пролин

*Незаменимые a- аминокислоты

Изомерия

Наряду с изомерией, обусловленной строением углеродного скелета и положением функциональных групп, для a- аминокислот характерна оптическая (зеркальная) изомерия. Все a- аминокислоты, кроме глицина, оптически активны. Например, аланин имеет один асимметрический атом углерода (отмечен звездочкой),

H2N -
H
I
C*-COOH
I
CH3

А значит, существует в виде оптически активных энантиомеров:

H-
COOH
+-NH2
CH3
D- аланин

H2N-
COOH
+-H
CH3
L- аланин

Все природные a- аминокислоты относятся к L- ряду.

Получение

1) Важнейший источник аминокислот - природные белки, при гидролизе которых образуются смеси a- аминокислот. Разделение этой смеси - довольно сложная задача, однако по обыкновению одна или две аминокислоты образуются в значительно больших количествах, чем все другие, и их удается выделить достаточно просто.

2) Синтез аминокислот из галогенозамещенных кислот действием аммиака

Cl-
CH-COOH + 2NH3 ® H2N-
I
R CH-COOH + NH4Cl
I
R

3) Микробиологический синтез. Известны микроорганизмы, которые в процессе жизнедеятельности продуцируют a- аминокислоты белков.

Физические свойства

Аминокислоты представляют собой кристаллические вещества с высокими (выше 250°С) температурами плавления, которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны. Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в воде и нерастворимы в органических растворителях, чем они похожи на неорганические соединения. Многие аминокислоты обладают сладким вкусом.

Химические свойства

1) Некоторые свойства аминокислот, в частности высокая температура плавления, объясняется своеобразным их строением. Кислотная (-COOH) и основная (-NH2) группы в молекуле аминокислоты взаимодействуют друг с другом, образуя внутренние соли (биполярные ионы). Например, для глицина

H2N-CH2-COOH « H3N+-CH2-COO-

2) Вследствие наличия в молекулах аминокислот функциональных групп кислотного и основного характера a- аминокислоты являются амфотерными соединениями, т.е. они образуют соли как с кислотами, так и со щелочами.

H2N-
CH-COOH + HCl ® Cl-(хлористоводородная соль a-аминокислоты)
I
R

H2N-
CH-COOH + NaOH ® H2N-
I
R CH-COO-Na+(натриевая соль a-аминокислоты) + H2O
I
R

3) В реакции со спиртами образуются сложные эфиры.

Этиловый эфир аланина

4) a- Аминокислоты можно ацилировать, в частности, ацетилировать, действуя уксусным ангидридом или хлористым ацетилом. В результате образуются N- ацильные производные a- аминокислот (символ "N" означает, что ацил связан с атомом азота).


N - ацетилаланин

5) a- Аминокислоты вступают друг с другом в реакцию поликонденсации, приводя к амидам кислот. Продукты такой конденсации называются пептидами. При взаимодействии двух аминокислот образуется дипептид:

H2N-
H
I
CH- O
II
C-OH + H-NH- CH3
I
CH- O
II
C-OH ®

Глицин аланин

® H2N- H
I
CH- O
II
C-NH- CH3
I
CH- O
II
C-OH + H2O

глицилаланин

При конденсации трех аминокислот образуется трипептид и т.д.

Связь - O
II
C-NH - называется пептидной связью.

Пептиды. Белки

Пептиды и белки представляют собой высокомолекулярные органические соединения, построенные из остатков a- аминокислот, соединенных между собой пептидными связями.

Ни один из известных нам живых организмов не обходится без белков. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов - катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д. Как видно, функции белков в природе универсальны. Белки входят в состав мозга, внутренних органов, костей, кожи, волосяного покрова и т.д. Основным источником a- аминокислот для живого организма служат пищевые белки, которые в результате ферментативного гидролиза в желудочно-кишечном тракте дают a- аминокислоты. Многие a- аминокислоты синтезируются в организме, а некоторые необходимые для синтеза белков a- аминокислоты не синтезируются в организме и должны поступать извне. Такие аминокислоты называются незаменимыми. К ним относятся валин, лейцин, треонин, метионин, триптофан и др. (см.таблицу). При некоторых заболеваниях человека перечень незаменимых аминокислот расширяется.

Пептиды и белки различают в зависимости от величины молекулярной массы. Условно считают, что пептиды содержат в молекуле до 100 (соответствует молекулярной массе до 10000), а белки - свыше 100 аминокислотных остатков (молекулярная масса от 10000 до нескольких миллионов). При этом в пептидах различают олигопептиды, содержащие в цепи не более 10 аминокислотных остатков, и полипептиды, содержащие до 100 аминокислотных остатков.

Конструкция полипептидной цепи одинакова для всего многообразия пептидов и белков. Эта цепь имеет неразветвленное строение и состоит из чередующихся метиновых (CH) и пептидных (CONH) групп. Различия такой цепи заключаются в боковых радикалах, связанных с метиновой группой, и характеризующих ту или иную аминокислоту. Один конец цепи со свободной аминогруппой называется N- концом, другой, на котором находится аминокислота со свободной карбоксильной группой, называется C- концом. Пептидные и белковые цепи записываются с N- конца. Иногда пользуются специальными обозначениями: на N- конце пишется NH- группа или только атом водорода -H, а на C- конце - либо карбоксильная COOH- группа, либо только гидроксильная OH- группа.

Для полипептидов и белков характерны четыре уровня пространственной организации, которые принято называть первичной, вторичной, третичной и четвертичной структурами.

Первичная структура белка - специфическая аминокислотная последовательность, т.е. порядок чередования a- аминокислотных остатков в полипептидной цепи.

Вторичная структура белка - конформация полипептидной цепи, т.е. способ скручивания цепи в пространстве за счет водородных связей между группами NH и CO. Одна из моделей вторичной структуры - a- спираль.

Третичная структура белка - трехмерная конфигурация закрученной спирали в пространстве, образованная за счет дисульфидных мостиков -S-S- между цистеиновыми остатками и ионных взаимодействий.

Четвертичная структура белка - структура, образующаяся за счет взаимодействия между разными полипептидными цепями. Четвертичная структура характерна лишь для некоторых белков, например гемоглобина.

Химические свойства

1) Денатурация. Утрата белком природной (нативной) конформации, сопровождающаяся обычно потерей его биологической функции, называется денатурацией. С точки зрения структуры белка - это разрушение вторичной и третичной структур белка, обусловленное воздействием кислот, щелочей, нагревания, радиации и т.д. Первичная структура белка при денатурации сохраняется. Денатурация может быть обратимой (так называемая, ренатурация) и необратимой. Пример необратимой денатурации при тепловом воздействии - свертывание яичного альбумина при варке яиц.

2) Гидролиз белков - разрушение первичной структуры белка под действием кислот, щелочей или ферментов, приводящее к образованию a- аминокислот, из которых он был составлен.

3) Качественные реакции на белки:

A) Биуретовая реакция - фиолетовое окрашивание при действии солей меди (II) в щелочном растворе. Такую реакцию дают все соединения, содержащие пептидную связь.

B) Ксантопротеиновая реакция - появление желтого окрашивания при действии концентрированной азотной кислоты на белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина).

Большое биологическое значение имеют аминокислоты - соединения со смешанными , в которых, как в аминах, содержатся аминогруппы и одновременно, как в кислотах, - карбоксильные группы - СООН, В качестве примера можно привести простейшие: аминоуксусную кислоту, или глицин, и аминопропионовую кислоту, или аланин. Строение других природных аминокислот этого типа можно выразить приведенной ниже общей формулой (где R - углеводородный радикал, который может содержать и различные функциональные группы):

Аминокислоты - амфотерные соединения: они образуют соли с основаниями (за счет карбоксильной группы) и с кислотами (за счет аминогруппы).

Ион водорода, отщепляющийся при диссоциации от карбоксила аминокислоты, может переходить к ее аминогруппе с образованием аммониевой группировки. Таким образом, аминокислоты существуют и вступают в реакции также в виде биполярных конов (внутренних солей):

Этим объясняется, что растворы аминокислот, содержащих одну карбоксильную и одну аминогруппу, имеют нейтральную реакцию.

Из молекул аминокислот строятся молекулы белковых веществ, или белков, которые при полном гидролизе под влиянием минеральных кислот, щелочей или ферментов распадаются, образуя смеси аминокислот.

Белки - природные высокомолекулярные азотсодержащие органические соединения. Они играют первостепенную роль во всех жизненных процессах, являются носителями жизни. Белки содержатся во всех тканях организмов, в крови, в костях. Ферменты (энзимы), многие гормоны представляют собой сложные белки. Кожа, волосы, шерсть, перья, рога, копыта, кости, нити йатуралм ного шелка образованы белками. Белок, так же как углеводы и жиры, - важнейшая необходимая составная Засть пищи.

В состав белков входят углерод, водород, , азот и часто сера, фосфор, железо. Молекулярное массы велики - от 1500 до нескольких миллионов.

Проблема строения и синтеза белков - одна из важнейших в Современной науке. В этой области в последние десятилетия достигнуты большие успехи. Установлено, что десятки, сотни и тысячи молекул аминокислот, образующих гигантские молекулы белков, соединяются друг с другом, выделяя воду за счет карбоксильных и аминогрупп; структуру цепи такой молекулы можно представить так:

В молекулах белков многократно повторяются группы атомов ; их называют амидными, или в химии белков - пептидными группами. Соответственно белки относят к природным высокомолекулярным полиамидам или полипептидам.

Все многообразие белков образовано 20 различными аминокислотами; при этом для каждого белка строго специфичной является последовательность, в которой остатки входящих в его состав аминокислот соединяются друг с другом. Найдены методы выяснения этой последовательности; в результате уже точно установлено строение некоторых белков. И самым замечательным достижением в этой области явилось осуществление синтеза из аминокислот простейших белков: как уже указывалось, в годах XX века синтетически получены гормон инсулин и фермент рибонуклеаза. Таким образом, доказана принципиальная возможность синтеза еще более сложных белков.




error: