Виды конвекции, и чем они отличаются. Конвекция – определение и примеры явления Виды конвекции в физике

При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием каких-то внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.

Конвекцией также называют перенос теплоты, массы или электрических зарядов движущейся средой.

Виды конвекции по причине появления

См. также

Другие способы переноса теплоты

Метеорологический аналог

Ссылки

  • Конвекция (видеурок, программа 8 класса)
  • Конвекция в жидкости (видеоролик с демонстрацией опыта)

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Конвекция" в других словарях:

    Распространение теплоты в жидких и газообразных веществах путем перемещения нагретых частиц. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КОНВЕКЦИЯ нагревание жидкостей и газов, происходящее путем перемещения… … Словарь иностранных слов русского языка

    КОНВЕКЦИЯ, передача тепла текучими средами, согласно кинетической теории. Конвекция представляет собой организованное круговое движение потока воды или воздуха на основе тепловых изменений в плотности и гравитационном притяжении, которые исходят… … Научно-технический энциклопедический словарь

    конвекция - и, ж. convection f., англ. convection, нем. Konvektion <лат. convectio привоз <лат. convectare свозить, привозить во множестве. ЭС. Перенос тепла или электрических зарядов движущейся средой. Конвекция тепла. БАС 1. На явлении конвекции… … Исторический словарь галлицизмов русского языка

    КОНВЕКЦИЯ - (от лат. convectio своз, привоз), перемещение какого либо признака, связанное с перемещением самого субстрата. Чаще всего этим именем обозначается перенос тепла, вызываемый перемещением нагретого вещества (жидкости или газа). Жидкость,… … Большая медицинская энциклопедия

    Конвекция - Конвекция. Конвекционные потоки, возникающие при нагревании воды в сосуде. КОНВЕКЦИЯ (от латинского convectio принесение, доставка), перенос теплоты в жидкостях, газах или сыпучих средах потоками этого вещества (имеющими более высокую температуру … Иллюстрированный энциклопедический словарь

    - (от лат. convectio принесение, доставка), перенос теплоты в жидкостях, газах или сыпучих средах потоками в ва. Естественная (свободная) К. возникает в поле силы тяжести при неравномерном нагреве (нагреве снизу) текучих или сыпучих в в. Нагретое в … Физическая энциклопедия

    Перемещение Словарь русских синонимов. конвекция сущ., кол во синонимов: 4 автоконвекция (1) … Словарь синонимов

    - (от лат. convectio принесение доставка), перемещение макроскопических частей среды (газа, жидкости), приводящее к переносу массы, теплоты и др. физических величин. Различают естественную (свободную) конвекцию, вызванную неоднородностью среды… … Большой Энциклопедический словарь

    Перемещение масс жидкости или газа вследствие разницы температур в отдельных местах среды и соответствующей разницы плотностей. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    конвекция - Перенос теплоты в жидкостях, газах или сыпучих средах потоками вещества [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN convection DE KonvektionWärmeströmung FR convection … Справочник технического переводчика

    конвекция - Процесс вертикального переноса тепла от места к месту, вызываемый различиями в температуре и плотности воды или воздуха … Словарь по географии

Книги

  • Конвекция Рэлея - Бенара , А. В. Гетлинг. Монография дает сжатое, но систематическое описание структур и динамики течений, возникающих при тепловой конвекции в плоском горизонтальном слое жидкости, подогреваемом снизу - конвекции…
  • Устойчивость равновесия, зарядка, конвекция и взаимодействие жидких масс в электрических полях , В. А. Саранин. Монография посвящена рассмотрению достаточно широкого спектра задач электрогидродинамики и электорфизики. Основное внимание уделено задачам устойчивости равновесия заряженных жидкостей,…

Если вытянуть руку над горячей плитой или над горящей электрической лампочкой, можно ощутить, как над этими предметами поднимаются струи теплого воздуха. Листик бумаги, подвешенный над горящей свечей или электрической лампочкой, под воздействием поднимающегося теплого воздуха начинает вращаться.

Подобное явление можно объяснить следующим образом. Воздух соприкасается с горячей лампой, нагревается, расширяется и обретает менее плотное состояние, в отличие от окружающего холодного воздуха. Сила Архимеда, которая действует на теплый воздух со стороны холодного воздуха снизу вверх, превосходит силу тяжести, которая действует на теплый воздух. Таким образом, теплый воздух поднимается вверх, тем самым, уступая место холодному воздуху.

Подобные явления мы можем наблюдать при нагревании жидкости снизу. Теплые слои жидкости – менее плотные, а, следовательно, более легкие – вытесняются вверх более плотными и тяжелыми, холодными слоями. Холодные слои жидкости, опустившись вниз, нагреваются от источника тепла и снова вытесняются менее нагретой жидкостью. Таким образом, такое движение равномерно прогревает всю воду. Это можно увидеть более наглядно, если на дно сосуда положить немного кристалликов марганцовки, которая окрашивает воду в фиолетовый цвет. В подобных опытах мы можем наблюдать еще одну разновидность теплопередачи – конвекция (латинское слово «конвекцио» – перенесение).

Следует отметить, что при процессе конвекции энергия перемещается самими струями газа или жидкости. К примеру, в комнате с отоплением, благодаря явлению конвекции поток нагретого воздуха поднимается к потолку, а холодного опускается к полу. Таким образом, воздух вверху гораздо теплее, чем возле пола.

Существует два вида конвекции: естественная (или другими словами свободная) и вынужденная. Примеры с нагревом жидкости и воздуха в комнате являются примерами естественной конвекции. Мы можем наблюдать вынужденную конвекцию, когда перемешиваем жидкость ложкой, мешалкой, насосом.

Такие вещества как жидкости и газы необходимо нагревать снизу. Если же делать наоборот – нагревать их сверху, конвекции не будет. Теплые слои не могут физически опуститься ниже холодных, более плотных и тяжелых. Таким образом, для протекания процесса конвекции необходимо нагревать газы и жидкости снизу.

В твердых телах конвекция происходить не может. Нам уже известно, что в твердых телах, частицы колеблются около определенной точки, т.к. они удерживаются взаимным притяжением. Поэтому, при нагревании твердых тел, в них не может образовываться вещество. В твердых телах, энергия может передаваться за счет теплопроводности.

Конвекция широко распространена в природе: в нижних слоях земной атмосферы, морях, океанах, в недрах нашей планеты, на Солнце (в слоях до глубины ~20-30% радиуса Солнца от его поверхности). С помощью явления конвекции осуществляют нагрев газов, а также жидкостей в разных технических устройствах.

Простым примером конвекции может также послужить охлаждение продуктов в холодильнике. Циркулирующий по трубам холодильника газ фреон, охлаждает пласты воздуха в верхней части холодильника. Охлажденный воздух, спустившись вниз, охлаждает все продукты, а потом снова направляется вверх. Когда мы раскладываем продукты питания в холодильнике, не стоит затруднять циркуляцию воздуха в нем. Решетка, расположенная ссади холодильника, служит для отвода теплого воздуха, который образуется в компрессоре при сжатии газа. Механизм охлаждения решетки также конвективный, поэтому следует оставлять свободным пространство за холодильником, чтобы конвекция проходила без затруднений.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Конвекция (от лат. convectio - принесение, доставка), перенос теплоты в жидкостях, газах или сыпучих средах потоками вещества. Различают естественную, или свободную, и вынужденную.

Описание процеса

Конвекция широко распространена в природе: в нижнем слое земной атмосферы, морях и океанах, в недрах Земли, на Солнце (в слое до глубины ~20-30% радиуса Солнца от его поверхности) и т.д. С помощью конвекции осуществляют охлаждение или нагревание жидкостей и газов в различных технических устройствах.

При подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха.

Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона

q = hA (T W - T 8),

где q - тепловой поток (измеряемый в ваттах), A - площадь поверхности источника тепла (в м 2), T W и T 8 - температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса h зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м 2 ·К).

Величина h неодинакова для случаев, когда воздух вокруг нагревателя неподвижен (свободная конвекция) и когда тот же нагреватель находится в воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент h можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается. Турбулентность - это сложное движение жидкости (газа), хаотичное в масштабах, существенно превышающих молекулярные.

Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду или в поток, то вокруг него образуются конвективные токи и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль при определении коэффициента конвективного теплопереноса.

Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен.

Естественная конвекция

Естественная конвекция возникает при неравномерном нагреве (нагреве снизу) текучих или сыпучих веществ, находящихся в поле силы тяжести (или в системе, движущейся с ускорением). Вещество, нагретое сильнее, имеет меньшую плотность и под действием архимедовой силы FA перемещается относительно менее нагретого вещества. Сила FA = Dr·V (Dr - разность плотностей нагретого вещества и окружающей среды, V - объём нагретого вещества). Направление силы FA, а следовательно, и конвекция для нагретых объёмов вещества противоположно направлению силы тяжести. Конвекция (приводит к выравниванию температуры вещества. При стационарном подводе теплоты к веществу в нём возникают стационарные конвекционные потоки, переносящие теплоту от более нагретых слоев к менее нагретым. С уменьшением разности температур между слоями интенсивность конвекции падает. При высоких значениях теплопроводности и вязкости среды конвекция также оказывается ослабленной. На конвекции ионизованного газа (например, солнечной плазмы) существенно влияет магнитное поле и состояние газа (степень его ионизации и т.д.). В условиях невесомости естественная конвекция невозможна.

Коэффициент теплопроводности при комнатной температуре.

Порядок величины коэффициента теплопроводности для различных веществ.

Конвекция -это 2 ой способ переноса тепла в пространстве.

Конвекция - это перенос тепла в жидкостях и газах с неравномерным распределением температуры за счет движения макрочастиц.

Перенос теплоты вместе с макроскопическими объемами вещества носит название конвективного теплопереноса , или просто конвекции .

Теплообмен между жидкостью и поверхностью твердого тела. Этот процесс получил специальное название конвективная теплоотдача (теплота отдается от жидкости к поверхности или наоборот)

Но конвекции в чистом виде не существует она всегда сопровождается теплопроводностью, такой совместный перенос тепла называется конвективным теплообменом.

Процесс теплообмена между поверхностью твердого тела и жидкостью называется теплоотдачей , а поверхность тела, через которую переносится теплота,- поверхностью теплообмена или теплоотдающей поверхностью .

Теплопередача -это перенос тепла от одной жидкости к другой через разделяющую их твердую стенку.

Виды_ движения жидкости. Различают вынужденную и естественную конвекцию. Движение называется вынужденным, если оно происходит за счет внешних сил, не связанных с процессом теплообмена. Например, за счет сообщения ей энергии насосом или вентилятором. Движение называется свободным , если оно определяется процессом теплообмена и происходит за счет разности плотностей нагретых и холодных макрочастиц жидкости.

Режимы.движения, жидкости. Движение жидкости может быть установившимся и неустановившимся. Установившимся называется такое движение, при котором скорость во всех точках пространства, занятого жидкостью, не изменяется во времени. Если скорость потока изменяется во времени (по величине или направлению), то движение будет неустановившееся .

Экспериментально установлено два режима движения жидкости: ламинарный и турбулентный. При ламинарном режиме все частицы жидкости движутся параллельно друг другу и ограждающим поверхностям. При турбулентном режиме частицы жидкости движутся хаотически, неупорядоченно. Наряду с направленным движением вдоль потока частицы могут двигаться поперек и навстречу потоку. При этом скорость жидкости непрерывно изменяется как н величине, так и по направлению.



Выделение ламинарного и турбулентного режимов имеет большое значение, так как в зависимости от режима различным будет механизм переноса тепла в жидкости. При ламинарном режиме тепло в поперечном направлении потока переносится лишь путем теплопроводности, а при направлении потока переносится лишь путем теплопроводности, а при турбулентном, кроме того, и за счет турбулентных вихрей, или конвекции.

Понятие пограничного слоя. Исследования показали, что в потоке вязкой жидкости, омывающем какое-либо тело, по мере приближения к его поверхности скорость уменьшается и на самой поверхности становит­ся равной нулю. Вывод о том, что скорость жидкости, лежащей на по­верхности тела, равна нулю, называется гипотезой прилипания. Она спра­ведлива до тех пор, пока жидкость можно рассматривать как сплошную среду.

Пусть неограниченный поток жидкости движется вдоль плоской поверхности (рис). Скорость жидкости вдали от нее равна w0, а на самой поверхности согласно гипотезе прилипания равна нулю. Следовательно, около поверхности существует слой замороженной жидкости, называемый динамическим пограничным слоем , в котором скорость изменяется от 0 до …... Так как скорость в пограничном слое приближается к w 0 асимптотически, то вводят следующее определение его толщины: толщиной динамического пограничного слоя называется расстояние от поверхности, на котором скорость отличается от w0 ,на определенную величину, обычно на 1%.

По мере движения вдоль поверхности толщина пограничного слоя растет. Вначале образуется ламинарный пограничный слои, который с ростом толщины становится неустойчивым и разрушается, превращаясь в турбулентный пограничный слой. Однако и здесь, вблизи поверхности, сохраняется тонкий ламинарный подслой……., в котором жидкость движется ламинарно. На рис. показано изменение скорости в пределах ламинарного (сечение I) и турбулентного (сечение II) по

В основе явления конвекции лежит процесс расширения более холодного вещества при его контакте с горячими массами.

При этом нагреваемый элемент теряет свою плотность. Его масса снижается при сопоставлении с окружающими его холодными условиями.

Особо точно явление конвекции характеризует движение тепловых потоков в процессе нагревания воды.

Яркие образцы

  1. Движения нагретого воздуха в середине комнаты с отопительной техникой. Здесь движение тёплых потоков направлено к потолку, а холодных – к полу. И при работающей отопительной системе вверху помещения воздух гораздо теплее, чем в его низу.
  2. Здесь стоит обратиться к закону Архимеда. Здесь тела расширяются под влиянием теплового излучения. Согласно данному закону, развитие температуры ведёт к развитию объёмов жидкости. Условие: в ёмкости находится жидкость, которая нагревается с нижней стороны. В итоге он поднимается всё выше. А влага, имеющая большую плотность, движется ниже. И при нагреве верхней части жидкости с большей и меньшей плотностью не сдвинутся. Тогда и конвекции не получится.

Возникновение определения


В 1834 году англичанин Вильям Прут первым предложил понятие «конвекция». Этим термином он охарактеризовал движение тепловых образований в нагретых, перемещающихся жидкостях.

Начальные теоретические анализы конвекции датированы 1916 годом. Экспериментальные изучения проходили с жидкостями, залитыми в ёмкости. Они подогревались снизу. Было выяснено, импульсы в них движутся от диффузии к конвекции при условии критических температур. Эти крайние показатели позже были наименованы «числами Роэля».

Благодаря данным экспериментам учёные смогли объяснить движения тепловых масс под силами Архимеда.

Разновидности

Их всего две – естественная и принудительная.

Указанный выше пример воздушных потоков в отапливаемом помещении – лучшая характеристика естественного вида конвекции.

Принудительная конвекция обычно получается при механических действиях в жидкости. Например, при перемешиваниях ложкой или использовании насоса.

Конвекция не образуется, когда нагреваются твёрдые тела. Причина – мощная взаимная тяга при вибрациях их твёрдых элементов. В итоге нагреваются тела твёрдой структуры. Получается излучение.

Теплопроводность появляется вместо обозначенных явлений в подобных телах и ведёт к посылу тепловой энергии.

Есть и третий вид конвекции – капиллярный. Он формируется при температурных скачках, когда жидкость проходит по трубам. И при сопоставлении этого вида конвекции с первыми двумя при естественных условиях разница получается незначительной.

Но при работе в космосе капиллярный вид становится ключевым фактором. Впрочем, как излучение и проводимость тепла. И даже мизерные конвективные колебания при невесомости крайне осложняют осуществление определённых инженерных замыслов.

Примеры в слоях земли

Конвективные процессы имеют тесную связь с природным формированием газоподобных элементов в слоях земной коры. Её образуют концентрические слои.

В центре устроена огромная жидкая субстанция. У неё крайне высокая плотность. В ней содержится железо, никель и прочие металлы. Это горячее ядро. Его окружение представлено литосферой и полужидким образованием.

Верхний слой данной сферы – это земная кора. Литосферу образуют отдельные платформы. Осуществляется их беспрепятственное перемещение по плоскости жидкого образования.

И когда разные участки этого образования и горные породы, отличающиеся по составу, нагреваются неравномерно, появляются конвективные потоки. Под их влиянием природным методом преобразуются ложи океанов и перемещаются несущие материки.

Сравнение с теплопроводностью

Теплопроводность характеризует потенциал физических тел к посылу тепла. Он получается через перемещения атомов и молекул.

Металлы превосходно проводят тепло, ведь их молекулы постоянно контактируют друг с другом. А газоподобные летучие элементы тепло проводят крайне плохо.

В основе принципов конвекции находится перенос тепла благодаря перемещению массы молекул элементов. А теплопроводность базируется на энергетическом взаимодействии между компонентами физического тела. Оба процесса происходят только при наличии частиц элемента.

Прочие образцы

Самый распространённый образец – это работа рядового бытового холодильника. В его холодильном отделении имеются трубы. По ним циркулирует охлаждённый газ – фреон. Из-за этого температуры в верхних слоях воздуха снижается. Холодные воздушные формирования замещаются более тёплыми и движутся вниз. Благодаря таким операциям охлаждаются продукты.

На тыльной стороне холодильника устроена решётка. Она способствует отхождению тёплого воздуха, который сформировался в холодильном компрессоре при сжатии газа. Решётка охлаждается. И этот процесс также базируется на конвективных принципах.

Поэтому специалисты советуют не заполнять пространство за холодильником. Только при свободной зоне там охлаждение получается без проблем.

Хорошо проявляется конвекция при движении ветра. Когда он нагревается над жаркими материками и охлаждается в более холодных зонах, воздушные потоки выталкивают друг друга. Они движутся. Идёт перемещение и влаги, и энергии.

Конвективные принципы заложены в действии планеров и способности птиц к парению. Когда у земной поверхности воздушные образования с меньшей плотность и большей температурой нагреваются неравномерно, образуются восходящие потоки. Они благоприятны для парения.

Чтобы справиться с огромными дистанциями без серьёзных трат энергии и усилий, птицы стараются отыскать такие потоки.

Отличные образцы конвекции — это появления дыма в дымоходных трубах и кратеров вулканов. Дым поднимается. И основой этого действия служит особые параметры дыма (повышенная температура и пониженная плотность) при аналогии с внешними условиями. Когда дым остывает, он плавно внедряется в нижние атмосферные слои. И поэтому трубы для выброса опасных веществ на предприятиях создают очень высокими.

Духовой шкаф

Сегодня всё чаще конвективные основы закладываются в работу нынешнего бытового оборудования, например, в духовые шкафы.

И в них уже можно одновременно готовить различные блюда. Причём готовка происходит при разных температурных показателях и на обособленных уровнях. И здесь вкус и запах совершенно не смещаются.

В стандартном модели воздух нагревается за счёт одной горелки. В итоге тепло расходится неравномерно.

А в духовой модификации с конвекцией горячие воздушные потоки движутся целенаправленно. Этому способствует специальный вентилятор. В результате блюда в таком шкафу эффективнее пропекаются и после приготовления отличаются хорошей сочностью. К тому же подобные шкафы стремительнее нагреваются, и пища в них готовится быстрее.

Микроволновка

Микроволновки, функционирующие по конвективным принципам, осуществляют следующие операции с пищей:

  1. Разогревание.
  2. Разморозка.
  3. Выпекание.
  4. Запекание.

В этой печи можно создавать различные булочки, пирожки и прочую выпечку. Превосходно такие модели подходят и для запекания рыбы или мяса. Их стандартная работа связана только с нагревом или разморозкой продуктов. А комбинированный режим добавляет ещё две указанные функции.

Такие печи отличаются серьёзными габаритами и ценами, также «кушают» много электричества. В них работает специальный дополнительный вентилятор и компонент, подогревающий воздух. Оба они устроены на задней панели печи или в её верхней стороне.

Гриль

Сегодня в продажах становится всё больше микроволновок с грилем и конвекцией. Они дают хозяевам больше кулинарных возможностей, чем обычные СВЧ-печи.

Пища готовится быстро, получается объёмной, очень вкусной и с золотистой корочкой.

Для этих же целей гриль с конвекцией устраивается и в духовых шкафах. Она обеспечивает запекание в усиленном скоростном режиме.

Видео об эксперименте с конвекцией смотрите далее:



error: