Конденсационные методы. Методы получения дисперсных систем Получение дисперсных систем методом конденсации

Методы получения дисперсных систем, их классификация и краткая характеристика. Какой метод получения дисперсных систем с термодинамической точки зрения наиболее выгоден?

Метод диспергирования. Заключается в механическом дроблении твердых тел до заданной дисперсности; диспергирование ультразвуковыми колебаниями; электрическое диспергирование под действием переменного и постоянного тока. Для получения дисперсных систем методом диспергирования широко используют механические аппараты: дробилки, мельницы, ступки, вальцы, краскотерки, встряхиватели. Жидкости распыляются и разбрызгиваются с помощью форсунок, волчков, вращающихся дисков, центрифуг. Диспергирование газов осуществляют главным образом с помощью барботирования их через жидкость. В пенополимерах, пенобетоне, пеногипсе газы получают с помощью веществ, выделяющих газ при повышенной температуре или в химических реакциях.

Несмотря на широкое применение диспергационных методов, они не могут быть применимы для получения дисперсных систем с размером частиц -100 нм. Такие системы получают кондесационными методами.

В основе конденсационных методов лежит процесс образования дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Необходимое требование при этом методе - создание пересыщенного раствора, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических или химических условиях.

Физические методы конденсации:

1) охлаждение паров жидкостей или твердых тел при адиабатическом расширении или смешивании их с большим объемом воздуха;

2) постепенное удаление (выпаривание) из раствора растворителя или замена его другим растворителем, в котором диспергируемое вещество хуже растворяется.

Так, к физической конденсации относится конденсация водяного пара на поверхности находящихся в воздухе твердых или жидких частиц, ионов или заряженных молекул (туман, смог).

Замена растворителя приводит к образованию золя в тех случаях, когда к исходному раствору добавляют другую жидкость, которая хорошо смешивается с исходным растворителем, но является плохим растворителем для растворенного вещества.

Химические методы конденсации основаны на выполнении различных реакций, в результате которых из пересыщенного раствора осаждается нерастворенное вещество.

В основе химической конденсации могут лежать не только обменные, но и окислительно-восстановительные реакции, гидролиза и т.п.

Дисперсные системы можно также получить методом пептизации, который заключается в переводе в коллоидный «раствор» осадков, частицы которых уже имеют коллоидные размеры. Различают следующие виды пептизации: пептизацию промыванием осадка; пептизацию поверхностно - активными веществами; химическую пептизацию.

Например, свежеприготовленный и быстро промытый осадок гидроксида железа переходит в коллоидный раствор красно-бурого цвета от добавления небольшого количества раствора FeCl 3 (адсорбционная пептизация) или HCl (диссолюция).

Механизм образования коллоидных частиц по методу пептизации изучен довольно полно: происходит химическое взаимодействие частиц на поверхности по схеме:

С точки зрения термодинамики, наиболее выгодным является метод диспергирования.

1) Коэффициент диффузии для сферической частицы рассчитывается по уравнению Эйнштейна:

где N А - число Авогадро, 6 10 23 молекул/моль;

Вязкость дисперсионной среды, Н · с/м 2 (Па · с);

r - радиус частицы, м;

R - универсальная газовая постоянная, 8,314 Дж/моль · К;

T - абсолютная температура, К;

Число 3,14.

2) Среднее квадратичное смещение:

где? ?? ???среднее квадратичное смещение (усредненная величина сдвига) дисперсной частицы, м 2 ;?

Время, за которое происходит смещение частицы (продолжительность диффузии), с;??

D ?? коэффициент диффузии, м 2 . с -1 .

? ? ????·D·?=2*12,24*10 -10 *5=12,24*10 -9 м 2

Ответ: ? ? ?? 12,24*10 -9 м 2 .

Дисперсной называют систему, в которой одно вещество распределено в среде другого, причем между частицами и дисперсионной средой есть граница раздела фаз. Дисперсные системы состоят из дисперсной фазы и дисперсионной среды.

Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость.

Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность.

Метод диспергирования. Заключается в механическом дроблении твердых тел до заданной дисперсности; диспергирование ультразвуковыми колебаниями; электрическое диспергирование под действием переменного и постоянного тока. Для получения дисперсных систем методом диспергирования широко используют механические аппараты: дробилки, мельницы, ступки, вальцы, краскотерки, встряхиватели. Жидкости распыляются и разбрызгиваются с помощью форсунок, волчков, вращающихся дисков, центрифуг. Диспергирование газов осуществляют главным образом с помощью барботирования их через жидкость. В пенополимерах, пенобетоне, пеногипсе газы получают с помощью веществ, выделяющих газ при повышенной температуре или в химических реакциях.

Несмотря на широкое применение диспергационных методов, они не могут быть применимы для получения дисперсных систем с размером частиц -100 нм. Такие системы получают кондесационными методами.

В основе конденсационных методов лежит процесс образования дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Необходимое требование при этом методе – создание пересыщенного раствора, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических или химических условиях.

Физические методы конденсации:

1) охлаждение паров жидкостей или твердых тел при адиабатическом расширении или смешивании их с большим объемом воздуха;

2) постепенное удаление (выпаривание) из раствора растворителя или замена его другим растворителем, в котором диспергируемое вещество хуже растворяется.

Так, к физической конденсации относится конденсация водяного пара на поверхности находящихся в воздухе твердых или жидких частиц, ионов или заряженных молекул (туман, смог).

Замена растворителя приводит к образованию золя в тех случаях, когда к исходному раствору добавляют другую жидкость, которая хорошо смешивается с исходным растворителем, но является плохим растворителем для растворенного вещества.

Химические методы конденсации основаны на выполнении различных реакций, в результате которых из пересыщенного раствора осаждается нерастворенное вещество.

В основе химической конденсации могут лежать не только обменные, но и окислительно-восстановительные реакции, гидролиза и т.п.

Дисперсные системы можно также получить методом пептизации, который заключается в переводе в коллоидный «раствор» осадков, частицы которых уже имеют коллоидные размеры. Различают следующие виды пептизации: пептизацию промыванием осадка; пептизацию поверхностно – активными веществами; химическую пептизацию.

С точки зрения термодинамики, наиболее выгодным является метод диспергирования.

Методы очистки:

1. Диализ – очистка золей от примесей с помощью полупроницаемых мембран, омываемых чистым растворителем.

2. Электродиализ – диализ, ускоренный за счет электрического поля.

3. Ультрафильтрация – очистка путем продавливания дисперсионной среды вместе с низкомалекулярными примесями через полупроницаемую мембрану(ультрафильтр).

Малекулярно-кинетические и оптические свойства дисперсных систем: броуновское движение, осмотическое давление, диффузия, седиментационное равновесие, седиментационный анализ, оптические свойства дисперсных систем.

Все молеклярно-кинетические свойства обусловлены самопроизвольны движением молекул и проявляются в броуновском движении, диффузии, осмосе, седиментауионном равновесии.

Броуновским называют непрерывное, хоатичное, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкости или газах, за счет воздействия молекул дисперсионной среды. Теория броуновского движения исходит из представления о взаимодействии случайной силы, которая характеризует удары молекул, силы, зависящей от времени, и силы трения при движении частиц дисперсной фазы в дисперсионной среде с определенной скоростью.

Кроме поступательного движения возможно и вращательное, характерно для двухмерных частиц неправильной формы (нитей, волокон, хлопьев). Броуновское движение наиболее ярко выражено у высокодисперсных систем, а его интенсивность зависит от дисперсности.

Диффузия – самопроизвольное распространение вещества из области с большей концентрацией в область меньшей концентрацией. Различают следующие виды:

1.)молекулярную

3)коллоидные частицы.

Скорость диффузии в газах наибольшая, а в твердых телах – наименьшая.

Осмотическое давление – это такое избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану. ОД возникает при движении чистогорастворителя в сторону раствора или от более разбавленного раствора в сторону более концентрированного, а следовательно связано с раностью концентрацией растворенного вещества и растворителя. Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы оно в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор).

Седиментация – это расслоение дисперсных систем под действием силы тяжести с отделением дисперсной фазы в виде осадка. Способность дисперсных систем к седиментации является показателем их седиментационной устойчивости. Процессы расслоения применяют тогда, когда требуется выделить тот или иной компонент из какого-то компонента из какого-то природного или искусственно приготовленного продукта, представляющего собой гетерогенную жидкостную систему. В одних случаях из системы извлекают ценный компонент, в других удаляют нежелательные примеси. В общественном питании процессы расслоения дисперсных систем необходимы, когда требуется получить прозрачные напитки, осветилить бульон, освободить его от частиц мяса.

Поведение луча света, встречающего на пути частицы дисперсной фазы, зависит о соотношения длины волны света и размеров частиц. Если размеры частиц больше длины световой волны, то свет отражается от поверхности частиц под определенным углом. Это явление наблюдается в суспензиях. Если размеры частиц меньше длины световой волны, то свет рассеивается.

Кандидат химических наук, доцент

Тема 1. Поверхностные явления и адсорбция

Занятие 1. Введение. Классификация и методы получения

дисперсных систем

Л е к ц и я

Саратов – 2010

Введение

1. Введение. Предмет и задачи коллоидной химии .

2. Классификация дисперсных систем.

3. Методы получения дисперсных систем

3. Свободная поверхностная энергия и поверхностное натяжение.

Заключение

ЛИТЕРАТУРА

1. Фролов коллоидной химии. – М.: Химия, 1989. – С. 10-20, 115-127.

2. Гельфман М., Ковалевич О., Юстратов В. Коллоидная химия. – СПб.: «Лань», 2003. – С. 6-15.

НАГЛЯДНЫЕ ПОСОБИЯ И ПРИЛОЖЕНИЯ

1. Слайды № 1,2,3,4:

Классификация дисперсных систем

Методы получения дисперсных систем

Удельная поверхность

Коэффициенты поверхностного натяжения

ВВЕДЕНИЕ

Дисциплина «Поверхностные явления и адсорбция» раннее называлась «Коллоидная химия». Коллоидную химию изучают после прохождения других химических наук (неорганическая, аналитическая, физическая, органическая химия), и это неслучайно.

Имея в качестве объектов исследования в основном реальные вещества и материалы, коллоидная химия завершает общехимическое образование. В то же время она является пограничной областью знаний, которая объединяет физическую химию и физику поверхностных явлений и дисперсных систем и рассматривает многие природные процессы, которым раньше не уделяли внимания. Поэтому коллоидная химия играет важную роль в научно-техническом прогрессе. Практически невозможно назвать отрасль промышленности, в которой не было бы коллоидно-химических процессов (пищевая промышленность , производство искусственного шелка, крашение тканей, кожевенная промышленность, сельское хозяйство , почвоведение, медицина, военная химия и др.).

1. ВВЕДЕНИЕ. ПРЕДМЕТ И ЗАДАЧИ КОЛЛОИДНОЙ ХИМИИ

Задача коллоидной химии – изучение гетерогенных систем с сильно развитой поверхностью раздела фаз. Такие системы называют дисперсными .

Одна из фаз дисперсной системы обычно сильно измельчена и называется дисперсной фазой . Дисперсная фаза в дисперсной системе распределена в объеме сплошной фазы, называемой дисперсионной средой . Число дисперсных фаз в дисперсной системе может быть в общем случае неограниченным.

Основоположником коллоидной химии по праву считается английский химик Томас Грэм (г. г.), впервые давший общие представления о дисперсных системах и разработавший некоторые методы их исследования (1861 г.). Изучая диффузию веществ в растворах, Грэм отметил медленное протекание диффузии частиц коллоидных растворов и их неспособность проникать через мембраны в отличие от молекул обычных растворов. Сопоставляя обычные растворы с коллоидными (золями), Грэм пришел к выводу о необходимости разделения веществ на «кристаллоиды» и «коллоиды».

В начале XX века профессор Санкт-Петербургского горного института показал, что не существует «особого вида коллоидов» и что одно и то же вещество в зависимости от условий, растворения может быть как «кристаллоидом», так и «коллоидом». Таким образом, установилось представление о коллоидном состоянии вещества, которое Веймарн считал всеобщим состоянием материи.

Дисперсные системы – наиболее типичные и вместе с тем сложные объекты коллоидной химии, потому что в них проявляется все многообразие поверхностных явлений, формирующих особые объемные свойства этих систем.

Дисперсными системами являются большинство окружающих нас реальных тел, поэтому есть основания называть науку о поверхностных явлениях и дисперсных системах физикой и химией реальных тел. Практически все тела окружающего нас мира являются дисперсными. Это - поликристаллические, волокнистые, слоистые, пористые, сыпучие и другие вещества, состоящие из наполнителя и связующего, а также вещества, находящиеся в состоянии суспензий, паст, эмульсий, пен, пыли и т. д. Почва, тела растительного и животного мира, облака и туманы, многие продукты промышленных производств, строительные материалы , металлы, полимеры, бумага, кожа, ткани, продукты питания – все это дисперсные системы свойства которых изучает коллоидная химия.

Универсальность дисперсного состояния, наличие внешней и внутренней поверхности у большинства реальных тел определяют фундаментальный и общенаучный характер коллоидной химии.

Познакомимся с основными понятиями коллоидной химии.

Коллоидная химия – это наука о поверхностных явлениях и дисперсных системах, их физических, химических и механических свойствах. Применяется и другое название коллоидной химии – Поверхностные явления и дисперсные системы , которое более точно отражает предмет изучения этой науки.

Таким образом, предметом изучения коллоидной химии являются дисперсные системы и поверхностные явления. Рассмотрим взаимосвязь этих понятий.

К поверхностным явлениям относятся процессы, происходящие на границе раздела фаз, в межфазном поверхностном слое сопряженных фаз.

Дисперсная система – это двух - или многофазная, т. е. гетерогенная система, в которой одна из фаз представлена очень маленькими частицами, размеры которых однако заметно превосходят молекулярные. Дисперсная система состоит из дисперсной фазы и дисперсионной среды.

Дисперсная фаза – это измельченная фаза дисперсной системы. Частицы дисперсной фазы могут иметь сферическую или кубическую форму, а также форму длинных тонких нитей (фибриллярные системы), очень тонких пленок, капилляров.

Дисперсионная среда – сплошная среда, в которой распределена дисперсная фаза.

Мерой раздробленности дисперсной фазы является дисперсность .

Дисперсность Д – величина, обратная размеру частиц. Для сферических частиц – это диаметр d, для кубических – ребро куба l . Следовательно

(1)

Чем мельче раздроблены частицы (т. е. чем выше дисперсность), тем больше суммарная поверхность частиц дисперсной фазы, т. е. больше поверхность раздела фаз. Поэтому важной характеристикой дисперсных систем является удельная поверхность .

Удельная поверхность – межфазная поверхность, приходящаяся на единицу объема или на единицу массы дисперсной фазы

; , (2)

где Sуд. – удельная поверхность, м2;

Vд. ф. – объем дисперсной фазы, м3;

m д. ф. – масса дисперсной фазы, г или кг.

Формулы (2) справедливы и для одной частицы дисперсной фазы. Несложный расчет показывает, что с уменьшением размера частиц удельная поверхность возрастает. Для частицы кубической формы с ребром , объем V = 3, а площадь поверхности S = 62 (6 сторон куба с площадью 2).

(3)

Из формулы 3 следует, что чем меньше , тем больше Sуд (см. табл. 1).

Чтобы убедиться, в том, что с увеличением степени дисперсности удельная поверхность возрастает, рассмотрим кубик с длиной ребра 1 см (рис. 1). Объем кубика 1 см3, площадь поверхности шести квадратов со стороной 1 см равна 6 см2. Удельная поверхность Sуд = 6 см2 /1 см3 = 6 см2 / см3. Раздробим этот кубик на более мелкие кубики с размером ребра 1 мм и рассчитаем удельную поверхность. Образовалось 10*10*10 = 1000 кубиков. Суммарный объем всех кубиков остался равным 1 см3. Площадь поверхности каждого кубика 6 мм2. Суммарная площадь поверхности тысячи кубиков 1000 * 6 мм2 = 6000 мм2 = 60 см2. Удельную поверхность получим путем деления площади поверхности на объем Sуд = 60 см2 /1 см3 = 60 см2 / см3. Обратите внимание, что сокращать единицы (см) в этом выражении нельзя, поскольку эти единицы относятся к разным фазам – см2 - к площади раздела фаз, а см3 – к объему дисперсной фазы. Сравнивая результаты расчета удельной поверхности нераздробленного кубика и раздробленного, приходим к выводу, что поверхность раздела фаз увеличилась в 10 раз.


Рис.1. Зависимость удельной поверхности от размера частиц

Если процесс дробления продолжить дальше, то, произведя необходимые расчеты, можно убедиться, что с уменьшением размера частиц удельная поверхность возрастает. Данные таблицы 1 подтверждают это. Так для частиц с размером ребра 1 нм удельная поверхность возрастает до 6000 м2/см3.

Таблица 1

Удельная поверхность кубических тел в зависимости

от степени измельчения

Аналогичные расчеты можно привести для частиц другой формы, они дадут подобные результаты. Таким образом, дисперсные системы обладают большой поверхностью раздела фаз. Она может достигать нескольких тысяч м2 на 1 г дисперсной фазы.

Приведенные примеры показывают, что дисперсные системы и поверхностные явления неразрывны: в дисперсных системах с их высокоразвитой поверхностью именно поверхностные явления определяют специфические свойства этих систем и пути управления этими свойствами.

В отличие от других областей химии, интересующихся преимущественно объемными свойствами фаз, у коллоидной химии в центре внимания поверхностные явления.

Общие признаки объектов коллоидной химии заключаются в следующем:

гетерогенность (частицы дисперсной фазы, несмотря на маленькие размеры, представляют собой самостоятельную фазу);

большая удельная поверхность (поэтому большое влияние на свойства оказывают поверхностные явления);

высокая дисперсность (малые размеры частиц влияют на оптические, кинетические и другие свойства систем).

Из всего вышесказанного вытекают задачи коллоидной химии:

– изучение поверхностных явлений и свойств поверхностных слоев;

– изучение условий получения и существования дисперсных систем и факторов, влияющих на их устойчивость;

– изучение молекулярно-кинетических, оптических, электрических, механических и других свойств дисперсных систем.

2. КЛАССИФИКАЦИЯ ДИСПЕРСНЫХ СИСТЕМ

Классификацию дисперсных систем осуществляют по различным признакам.

Классификация по степени связанности частиц дисперсной фазы

Свободнодисперсные системы – дисперсные системы, в которых частицы дисперсной фазы подвижны. В таких системах мелкие частицы дисперсной фазы свободно перемещаются в жидкой или газообразной дисперсионной среде . Это эмульсии, аэрозоли , суспензии и др.

Связнодисперсные системы дисперсные системы, в которых частицы дисперсной фазы или дисперсионной среды связаны между собой и не могут свободно перемещаться. К этому классу относятся дисперсные системы с твердой дисперсионной средой, а именно все капиллярно-пористые тела (почвы, грунты, горные породы, адсорбенты, активные угли), а также гели и студни, в которых сплошная пространственная сетка (матрица), включает очень мелкие ячейки, заполненные жидкостью или газом (желе, застывший клей, мармелад).

Классификация по степени дисперсности

Рассмотрим эту классификацию для свободнодисперсных систем.

1. Грубодисперсные (микрогетерогенные) системы – системы с размерами частиц от 100 донм (10-5 – 10-3 см). Частицы дисперсной фазы содержат более 109 атомов.

К грубодисперсным системам относятся: порошки, суспензии, эмульсии, пены, дымы. Эти системы неустойчивы, расслаиваются при стоянии, их частицы видны в микроскоп, они задерживаются бумажным фильтром.

2. Коллоидно-дисперсные (ультрамикрогетерогенные) системы – системы с размерами частиц от 1 до 100 нм (10-7 – 10-5 см). Дисперсные частицы содержат от 103 до 109 атомов.

Такие системы называют коллоидными (коллоидные растворы) или золями . Различают твердые золи (солидозоли ) с твердой дисперсионной средой, лиозоли с жидкой дисперсионной средой и аэрозоли с газообразной средой.

Частицы коллоидных систем невидимы в обычный микроскоп, проходят через бумажный фильтр, устойчивы длительное время.

3. Молекулярно-дисперсные системы – это истинные растворы, с размером частиц ~10-8 см (менее 103 атомов). Истинные растворы – это гомогенные системы, они не являются предметом изучения коллоидной химии, их свойства резко отличаются от свойств гетерогенных коллоидных растворов.

Для связнодисперсных систем к которым относятся пористые тела, применима другая классификация: микропористые (размеры пор до 2 нм), переходно-пористые (2-200 нм) и макропористые (выше 200 нм.). Другие дисперсные системы с твердой дисперсионной средой удобнее классифицировать по дисперсности так же, как и свободнодисперсные.

Обобщенно приведенную выше классификацию можно представить в виде схемы.

Эта классификация наиболее распространена. В ее основу положено агрегатное состояние частиц дисперсной фазы и дисперсионной среды. Сочетание трех агрегатных состояний (твердое, жидкое, газообразное) позволяет выделить девять типов дисперсных систем - для краткости их условно обозначают дробью, числитель которой указывает на агрегатное состояние дисперсной фазы, а знаменатель – дисперсионной среды. Например, обозначение т/ж показывает, что система состоит из твердой дисперсной фазы и жидкой дисперсионной среды (твердое в жидкости). В таблице 2 приведены возможные варианты дисперсных систем и примеры разных видов дисперсных систем.

Классификация по агрегатному состоянию фаз

Смеси газов представляют собой, вообще говоря, гомогенные системы. Однако, в этом случае следует принимать во внимание микронеоднородность этой системы, обусловленную флуктуациями (колебаниями) плотности. Именно наличием флуктуаций плотности и рассеянием на них света объясняется голубой цвет неба: если бы атмосфера была совершенно однородной, то небо было бы черным.

Таблица 2

Классификация дисперсных систем по агрегатному состоянию фаз

Дисперсионная

Дисперсная фаза

Твердое тело

Жидкость

Суспензии и золи: промышленные суспензии, взвеси, пасты, илы, лекарственные препараты, природные воды

Эмульсии : природная нефть, мо-локо, кремы, ле-карственные препараты

Пены : флотаци-онные, противопожарные, мыльные

Твердые гетерогенные систе-мы: минералы, сплавы, бетон, композиционные материалы, пластмассы

Капиллярные системы: гели, жидкость в пористых телах, в адсорбентах, почвы, грунты, ткани живых организмов, жемчуг

Пористые тела: адсорбенты и катализаторы в газах, активные угли, пенобетон, пе - нополиуретан, пемза, пористый шоколад

Газообразная

Аэрозоли: пыли, дымы, порошки, перистые облака, бактерии в воздухе

Аэрозоли: туманы, в том числе промышленные, облака кучевые, атмосфера Земли

смесь газов

3. МЕТОДЫ ПОЛУЧЕНИЯ ДИСПЕРСНЫХ СИСТЕМ

Коротко остановимся на методах получения дисперсных систем. Как известно, золи по размеру частиц дисперсной фазы занимают промежуточное положение между истинными растворами и суспензиями, поэтому, естественно, они могут быть получены либо путем соединения отдельных молекул или ионов растворенного вещества в агрегаты, либо в результате диспергирования сравнительно больших частиц. В соответствии с этим Сведберг делит методы синтеза коллоидных систем на конденсационные и диспергационные . Особо от этих методов стоит метод пептизации , который заключается в переводе в коллоидный раствор осадков, первичные частицы которых уже имеют коллоидные размеры. Наконец, в некоторых случаях коллоидные системы могут образовываться путем самопроизвольного диспергирования дисперсной фазы в дисперсионной среде.

Основными двумя условиями получения коллоидных систем, независимо от применяемых методов синтеза, являются: нерастворимость дисперсной фазы в дисперсионной среде и наличие в системе, в которой образуются частицы, веществ, способных стабилизировать эти частицы. Такими веществами могут быть как чужеродные вещества, специально вводимые в систему, так и соединения, образующиеся при взаимодействии дисперсной фазы с дисперсионной средой.

Диспергационные методы получения дисперсных систем

Диспергированием называют такое измельчение твердых и жидких тел в инертной (не взаимодействующей с измельчаемым веществом) среде, при котором резко повышается дисперсность и образуется дисперсная система, обладающая значительной удельной межфазной поверхностью. В противоположность растворению диспергирование происходит, как правило, не самопроизвольно, а с затратой внешней работы, расходуемой на преодоление межмолекулярных сил при дроблении вещества.

Процесс диспергирования имеет большое практическое значение в ряде производств и технологических процессов: при получении высокодисперсных порошков, пигментов для красок, при измельчении руд полезных ископаемых , при изготовлении муки и других пищевых продуктов и т. д.

Известны различные способы диспергирования.

Для получения грубодисперсных систем служат шаровые мельницы, представляющие собой полые, вращающиеся цилиндры, содержащие некоторое количество стальных или керамических шаров. При вращении цилиндра эти шары перекатываются, дробя и истирая измельчаемый материал. В шаровых мельницах получают порошки, цемент, густотертые краски и т. п.; размер частиц дисперсной фазы в них можно довести лишь до 1000 нм. Для более тонкого измельчения – до 100 нм и меньше – используют коллоидные мельницы, в которых измельчаемый материал (грубая суспензия), проходя через зазор между вращающимся ротором и корпусом мельницы, подвергается дальнейшему измельчению. В коллоидных мельницах получают акварельные краски, пудру, лекарственные препараты и т. п.

Конденсационные методы получения дисперсных систем

Методы конденсации по сравнению с методами диспергирования дают возможность получать коллоидные системы более высокой дисперсности.

Конденсационные методы получения дисперсных систем основаны на создании условий, при которых будущая дисперсионная среда пересыщается веществом будущей дисперсной фазы. В зависимости от способов создания этих условий конденсационный метод подразделяют на физический и химический .

К физическим методам относятся:

а) Конденсация паров при пропускании их через холодную жидкость, в результате чего образуются лиозоли. Так, при пропускании паров кипящей ртути, серы, селена в холодную воду образуются их коллоидные растворы.

б) Замена растворителя . Метод основан на том, что вещество, из которого хотят получить золь, растворяют в подходящем растворителе, затем добавляют вторую жидкость, являющуюся плохим растворителем для вещества, но хорошо смешивающуюся с исходным растворителем. Растворенное первоначально вещество выделяется из раствора в высокодисперсном состоянии. Например, таким путем можно получить гидрозоли серы, фосфора, канифоли, парафина, вливая их спиртовый раствор в воду.

Химическая конденсация отличается от всех рассмотренных выше методов тем, что диспергируемое вещество берут не в готовом виде, а получают непосредственно в растворе химической реакцией, в результате которой образуется нерастворимое в данной среде нужное соединение. Задача сводится к тому, чтобы получить выпадающий осадок в мелкодисперсном состоянии. В методах химической конденсации используются любые реакции, ведущие к образованию новой фазы: реакции двойного обмена, разложения, окисления-восстановления и т. д. Стабилизатором коллоидного раствора служит обычно один из участников реакции или побочный продукт, из которых на границе раздела частица – среда образуются адсорбционные слои ионного или молекулярного типа, препятствующие слипанию частиц и выпадению их в осадок.

4. СВОБОДНАЯ ПОВЕРХНОСТНАЯ ЭНЕРГИЯ И ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ

Поверхностные явления имеют особое значение для свойств дисперсных систем, обладающих развитой поверхностью раздела фаз. С поверхностными явлениями связаны такие процессы, как смачивание и растекание жидкостей по поверхности, прилипание, отмывание, поверхностная адсорбция, капиллярные явления, флотация. На этих явлениях основаны различные технологические процессы: крашение и печатание, гетерогенный катализ, применение связующих материалов и клеев, изготовление противогазов, очистка сточных вод . Знание природы поверхностных явлений необходимо военному химику, поскольку именно с этими процессами связано заражение поверхностей боевой техники и их дегазация, специальная обработка обмундирования, работа противогазов.

Всякая поверхность раздела фаз сильно отличается по физико-химическим свойствам от обеих соприкасающихся фаз. Возьмем две соприкасающиеся фазы: газ и жидкость, рассмотрим поведение молекул жидкости внутри объема и на поверхности (рис.1)

Рис.2. Действие межмолекулярных сил в объеме и на поверхности

Между молекулами существует межмолекулярное взаимодействие. Если молекула находится внутри, она испытывает притяжение со стороны всех соседних молекул. Равнодействующая всех этих сил равна 0. Молекула, находящаяся на поверхности, испытывает притяжение только внутренних молекул (газ из-за своей разряженности взаимодействует слабо), равнодействующая этих сил направлена внутрь тела, т. е. явно выражено стремление к втягиванию поверхностных молекул внутрь тела, поверхность тела как бы находится в натянутом состоянии и стремится к своему сокращению. Поскольку действие сил на поверхностные молекулы не скомпенсировано, такие молекулы обладают свободной поверхностной энергией. Дадим определение.

Свободная поверхностная энергия – это избыток энергии молекул поверхностного слоя по сравнению с молекулами, находящимися внутри DE = E* – Eср.

Эта энергия зависит от природы вещества соприкасающихся фаз, от температуры и площади раздела фаз.

где Fs – свободная поверхностная энергия, Дж;

s – площадь раздела фаз, м2;

s – коэффициент пропорциональности, называемый коэффициентом поверхностного натяжения (или просто поверхностное натяжение), Дж/м2.

Как известно, любая система стремится к минимуму энергии. Чтобы уменьшить свободную поверхностную энергию (Fs = ss) у системы есть два пути: уменьшить поверхностное натяжение s или площадь поверхности раздела фаз s.

Уменьшение s происходит при адсорбции веществ на твердых и жидких поверхностях (это является движущей силой адсорбции), при растекании одной жидкости по другой.

Стремление к уменьшению площади поверхности S приводит к слиянию частиц дисперсной фазы, к их укрупнению (при этом удельная поверхность сокращается), т. е. этот процесс является причиной термодинамической неустойчивости дисперсных систем.

Стремление жидкости к уменьшению поверхности приводит к тому, что она стремится принять форму шара. Математические расчеты показывают, что наименьшую площадь при постоянном объеме имеет шар, поэтому частицы жидкости принимают шарообразную форму, если только эти капли не расплющиваются под действием силы тяжести. Капли ртути на поверхности приобретают форму шариков. В невесомости все жидкости приобретают форму шара; шарообразную форму планет также приписывают действию поверхностных сил.

Поверхностное натяжение

Физический смысл коэффициента поверхностного натяжения можно истолковать с разных точек зрения.

1.Свободная поверхностная энергия (удельная поверхностная

энергия)

Из выражения (3) следует

https://pandia.ru/text/77/498/images/image009_29.gif" width="57" height="48"> [Дж/м2], (6)

где W – работа по созданию новой поверхности раздела фаз, Дж;

S – площадь поверхности раздела фаз, м2.

Из выражения (5) следует, что s – это работа, которую надо совершить, чтобы в изотермических условиях увеличить на единицу площадь поверхности раздела фаз при неизменном объеме жидкости (т. е. перенести соответствующее число молекул жидкости из объема в поверхностный слой).

Например, при разбрызгивании жидкости совершается работа, которая переходит в свободную поверхностную энергию (при разбрызгивании поверхность раздела фаз многократно увеличивается). Такая же работа затрачивается при дроблении твердых тел.

Так как поверхностное натяжение связано с работой, расходуемой на разрыв межмолекулярных связей при переводе молекул из объема в поверхностный слой, то очевидно, что поверхностное натяжение является мерилом сил межмолекулярного взаимодействия внутри жидкости. Чем полярнее жидкость, тем сильнее взаимодействие между молекулами, тем сильнее поверхностные молекулы втягиваются внутрь, тем выше значение s.

Из жидкостей наибольшее значение s у воды. Это неслучайно, поскольку между молекулами воды образуются достаточно прочные водородные связи. В неполярных углеводородах между молекулами существуют только слабые дисперсионные взаимодействия, поэтому поверхностное натяжение у них небольшое. Еще больше значение s у жидкой ртути. Это свидетельствует о значительном межатомном взаимодействии (и о большой величине свободной поверхностной энергии).

Высоким значением s характеризуются твердые тела.

3.Поверхностная сила

Есть также силовое толкование поверхностного натяжения. Исходя из размерности коэффициента поверхностного натяжения Дж/м2, можно записать

Таким образом, поверхностное натяжение – это поверхностная сила, приложенная к единице длины контура, ограничивающего поверхность и направленная на сокращение поверхности раздела фаз .

Существование этой силы наглядно иллюстрируется опытом Дюпре. На жесткой проволочной рамке закреплена подвижная перемычка (рис. 2). В рамке натянута мыльная пленка (положение 1). Чтобы растянуть эту пленку до положения 2, надо приложить силу F, которой противодействует сила поверхностного натяжения F2. Эта сила направлена вдоль поверхности (по касательной), перпендикулярно к контуру, ограничивающему поверхность. Для пленки на рис. 2 роль части контура играет подвижная перемычка.

Рис. 3. Опыт Дюпре

Следовательно,

где F – сила, стягивающая контур поверхности, Н;

 – длина контура, м.

Действие поверхностного натяжения можно наглядно представить в виде совокупности сил, стягивающих края поверхности к центру (поэтому эта сила называется поверхностным натяжением). Эти силы изображены на рис. 3 стрелками – векторами; длина стрелок отражает величину поверхностного натяжения, а расстояние между ними соответствует единице длины контура.

Рис. 4. Действие сил поверхностного натяжения

Таким образом, силы поверхностного натяжения обладают следующими свойствами:

1) равномерно распределены по линии раздела фаз;

Поверхностное натяжение возникает на всех поверхностях раздела фаз в соответствии с агрегатным состоянием этих фаз введены следующие обозначения:

sЖ-Г (на границе жидкость – газ)

sЖ1-Ж2 (на границе двух несмешивающихся жидкостей)

sТ-Г (на границе твердое тело – газ)

sТ-Ж (на границе твердое тело – жидкость)

Непосредственно экспериментально можно определить поверхностное натяжение на границе жидкость – газ и жидкость – жидкость. Методы определения поверхностного натяжения на границе с твердым телом основаны на косвенных измерениях.

ЗАКЛЮЧЕНИЕ

Сегодня мы познакомились с основными понятиями коллоидной химии, и перешли к рассмотрению поверхностных явлений, которые имеют большую роль в природе и технике. На следующей лекции мы продолжим знакомство с такими поверхностными явлениями как адгезия и когезия, смачивание и растекание, адсорбция.

Доцент кафедры ФОХ

Существуют два общих подхода к получению дисп. систем – дисперсионный и конденсационный. Дисперсионный метод основан на измельчении макроскопических частиц до наноразмеров (1-100 нм).

Механическое измельчение не получило широкого распространения из-за большой энергоемкости. В лабораторной практике используется ультразвуковое измельчение. При измельчении конкурируют два процесса: диспергирование и агрегирование возникающих частиц. Соотношение скоростей этих процессов зависит от длительности помола, температуры, природы жидкой фазы, присутствия стабилизаторов (чаще всего ПАВ). Подбирая оптимальные условия, можно получить частицы требуемого размера, однако распределение частиц по размерам бывает достаточно широким.

Наиболее интересно самопроизвольное диспергирование тв тел в жидкой фазе. Подобный процесс может наблюдаться для веществ, имеющих слоистую структуру. В таких структурах имеет место сильное взаимодействие между атомами внутри слоя и слабое в-д-в взаимодействие между слоями. Например, сульфиды молибдена и вольфрама, имеющие слоистую структуру, самопроизвольно диспергируются в ацетонитриле с образованием бислойных частиц нанометрового размера. При этом жидкая фаза проникает между слоями, увеличивает межслойное расстояние, взаимодействие между слоями ослабевает. Под действием тепловых колебаний происходит отрыв наночастиц с поверхности тв фазы.

Конденсационные методы подразделяются на физические и химические. Формирование наночастицосущствляется через ряд переходных состояний при образовании промежуточных ансамблей, приводящих к возникновению зародыша новой фазы, спонтанному его росту и появлению физической поверхности раздела фаз. Важно обеспечить высокую скорость образования зародыша и малую скорость его роста.

Физические методы широко используются для получения металлических ульрадисперсных частиц. Эти методы по сути являются дисперсионно-конденсационными. На первой стадии металл диспергируют до атомов при испарении. Затем за счет пересыщения паров происходит конденсация.

Метод молекулярных пучков применяют для получения покрытий толщиной около 10 нм. Исходный материал в камере с диафрагмой нагревают до высоких температур в вакууме. Испарившиеся частицы, проходя через диафрагму, образуют молекулярный пучок. Интенсивность пучка и скорость конденсации частиц на подложке можно менять, варьируя температуру и давление пара над исходным материалом.

Аэрозольный метод заключается в испарении металла в разреженной атмосфере инертного газа при пониженной температуре с последующей конденсацией паров. Этим методом были получены наночастицыAu, Fe, Co, Ni, Ag, Al; их оксидов, нитридов, сульфидов.

Криохимический синтез основан на конденсации атомов металла (или соединений металла) при низкой температуре в инертной матрице.

Химическая конденсация . Коллоидный раствор золота (красного) с размером частиц был получен в 1857 г Фарадеем. Этот золь демонстрируют в Британском музее. Устойчивость его объясняется образованием ДЭС на поверхности раздела тв фаза-раствор и возникновением электростатической составляющей расклинивающего давления.

Часто синтез наночастиц проводят в растворе при протекании химических реакций. Для получения металлических частиц применяют реакции восстановления. В качестве восстановителя используют алюмо- и борогидриды, гипофосфиты и др. Например, золь золота с размером частиц 7 нм получают восстановлением хлорида золота боргидридом натрия.

Наночастицы солей или оксидов металлов получают в реакциях обмена или гидролиза.

В качестве стабилизаторов используют природные и синтетические ПАВ.

Были синтезированы наночастицы смешанного состава. Например, Cd/ZnS, ZnS/CdSe, TiO 2 /SiO 2 . Такие наночастицы получают осаждением молекул одного типа (оболочка) на предварительно синтезированной наночастице другого типа (ядро).

Основной недостаток всех методов – это широкое распределение наночастиц по размерам. Один из методов регулирования размеров наночастиц связан с получением наночастиц в обратных микроэмульсиях. В обратных микроэмульсияхдис фаза – вода, дис среда – масло. Размер капель воды (или другой полярной жидкости) может меняться в широких пределах в зависимости от условий получения и природы стабилизатора. Капля воды играет роль реактора, в котором образуется новая фаза. Размер образующейся частицы ограничен размерами капли, форма этой частицы повторяет форму капли.

Золь-гелевый метод содержит следующие стадии: 1. приготовление исходного раствора, обычно содержащего алкоксиды металлов М(ОR) n , где М-это кремний, титан, цинк, алюминий, олово, церий и др., R- алкал или арил; 2. образование геля за счет реакций полимеризации; 3. сушка; 4. термообработка. В органических растворителях проводят гидролиз

М(ОR) 4 +4H 2 OM(OH) 4 +4ROH.

Затем происходит полимеризация и образование геля

mM(OH) n (MO) 2 +2mH 2 O.

Метод пептизации. Различают пептизацию при промывании осадка, пептизацию осадка электролитом; пептизацию поверхностно-активными веществами; химическую пептизацию.

Пептизация при промывании осадка сводится к удалению из осадка электролита, вызвавщего коагуляцию. При этом толщина ДЭС увеличивается, силы ионно-электростатического отталкивания преобладают над силами межмолекулярного притяжения.

Пептизация осадка электролитомсвязана со способностью одного из ионов электролита адсорбироваться на частицах, что способствует формированию ДЭС на частицах.

Пептизация поверхностно-активными веществами. Макромолекулы ПАВ адсорбируясь на частицах или придают им заряд (ионогенные ПАВ) или формируют адсорбционно-сольватный барьер, препятствующий слипанию частиц в осадке.

Химическая пептизация происходит, когда добавляемое в систему вещество взаимодействует с веществом осадка. При этом образуется электролит, формирующий ДЭС на поверхности частиц.

Методы получения ДИСПЕРСНЫХ СИСТЕМ

Методы получения коллоидных растворов также можно разделить на две группы: методы конденсации и диспергирования (в отдельную группу выделяется метод пептизации, который будет рассмотрен позднее). Еще одним необходимым для получения золей условием, помимо доведения размеров частиц до коллоидных, является наличие в системе стабилизаторов – веществ, препятствующих процессу самопроизвольного укрупнения коллоидных частиц.

Рис. Классификация способов получения дисперсных систем

(в скобках указан вид систем)

Дисперсионные методы

Дисперсионные методы основаны на раздроблении твердых тел до частиц коллоидного размера и образовании таким образом коллоидных растворов. Процесс диспергирования осуществляется различными методами: механическим размалыванием вещества в т.н. коллоидных мельницах, электродуговым распылением металлов, дроблением вещества при помощи ультразвука.

Диспергирование должна быть самопроизвольное и несамопроизвольное. Самопроизвольное диспергирование характерно для лиофильных систем и связано с ростом беспорядка системы (когда из одного большого куска образуется много мелких частиц). При диспергировании при постоянной температуре рост энтропии должен превышать изменение энтальпии.

В отношении лиофобных систем самопроизвольное диспергирование исключено, в связи с этим диспергирование возможно лишь путем затраты определœенной работы или эквивалентного количества теплоты, ĸᴏᴛᴏᴩᴏᴇ измеряется, в частности, энтальпией.

Изменение энтальпии в изобарно-изотермическом процессе определяется соотношением между работой когезии W к и работой адгезии W а. Энергия (работа) когезии W к характеризует связь внутри тела, а энергия (работа) адгезии W а - связь его с окружающей средой.

Энергию образования новой поверхности можно выразить через энтальпию, которая имеет вид

Уравнение показывает изменение энтальпии в результате диспергирования. Для лиофильных систем, способных к самопроизвольному диспергированию, когда ΔS > 0, из условия следует, что ΔH < 0 и

Выполнение данного условия означает самопроизвольный распад большого куска на множество мелких. Подобный процесс наблюдается для таких лиофильных систем, как растворы ВМС, частицы глины и некоторые другие.

В отличие от лиофильных в лиофобных системах когезия W к больше энергии межфазового взаимодействия, ᴛ.ᴇ. адгезии W а. Рост энтальпии (ΔН > 0) соответствуют увеличению энергии Гиббса

ΔН > TΔS; ΔG > 0.

Процесс диспергирования в данном случае является типично несамопроизвольным и осуществляется за счёт внешней энергии.

Диспергирование характеризуется степенью диспергирования. Она определяется отношением размеров исходного продукта и частиц дисперсной фазы полученной системы. Степень диспергирования можно выразить следующим образом:

α 1 = d н /d к; α 2 = B н /B к; α 3 = V н /V к,

где d н; d к; B н; B к; V н; V к - соответственно диаметр, площадь пoвepxнocти, объём частиц до и после диспергирования.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, степень диспергирования должна быть выражена в единицах размера (α 1), площади поверхности (α 2) или объёма (α 3) частиц дисперсной фазы, ᴛ.ᴇ. должна быть линœейной, поверхностной или объёмной.

Работа W, необходимая для диспергирования твердого тела или жидкости, затрачивается на деформирование тела W д и на образование новой поверхности раздела фаз W а, которая измеряется работой адгезии. Деформирование является крайне важно й предпосылкой разрушения тела. Согласно П.А.Ребиндеру работа диспергирования определяется по формуле

W =W a + W д = σ*ΔB + кV,

где σ* - величина, пропорциональная или равная поверхностному натяжению на границе раздела между дисперсной фазой и дисперсионной средой; ΔB - увеличение поверхности раздела фаз в результате диспергирования; V - объём исходного тела до диспергирования; к - коэффициент, эквивалентный работе деформирования единицы объёма тела.

Методы конденсации

К конденсационным методам получения дисперсных систем относятся конденсация, десублимация и кристаллизация. Οʜᴎ основаны на образовании новой фазы в условиях пересыщенного состояния вещества в газовой или жидкой среде. При этом система из гомогенной переходит в гетерогенную. Конденсация и десублимация характерны для газовой, а кристаллизация - для жидкой среды.

Необходимым условием конденсации и кристаллизации является пересыщение и неравномерное распределœение вещества в дисперсионной среде (флуктуация концентрации), а также образование центров конденсации или зародышей.

Степень пересыщения β для раствора и пара можно выразить следующим образом:

β ж = с/с s , β П = р/р s ,

где р, с - давление пересыщенного пара и концентрация вещества в пересыщенном растворе; р s - равновесное давление насыщенного пара над плоской поверхностью; с s - равновесная концентрация, соответствующая образованию новой фазы.

Для осуществления кристаллизации охлаждают раствор или газовую смесь.

В корне конденсационных методов получение дисперсных систем лежат процессы кристаллизации, десублимации и конденсации, которые вызваны уменьшением энергии Гиббса (ΔG < 0) и протекают самопроизвольно.

При зарождении и образовании частиц из пересыщенного раствора или газовой среды изменяется химический потенциал µ, возникает поверхность раздела фаз, которая становится носителœем избыточной свободной поверхностной энергии.

Работа͵ затрачиваемая на образование частиц, определяется поверхностным натяжением σ и равна

W 1 = 4πr 2 σ,

где 4πr 2 - поверхность сферических частиц радиусом r.

Химический потенциал изменяется следующим образом

Δμ = μ i // – μ i / < 0; μ i // > μ i / ,

где μ i / и μ i // - химические потенциалы гомо и гетерогенных систем (при переходе от мелких капель к крупным).

Изменение химического потенциала характеризует перенос определœенного числа молей вещества из одной фазы в другую; это число n молей равно объёму частицы 4πr 3 /3, делœенному на мольный объём Vм

Работа образования новой поверхности в процессе конденсации W к равна

где W 1 и W 2 - соответственно работа͵ затрачиваемая на образование поверхности частиц, и работа на перенос вещества из гомогенной среды в гетерогенную.

Образование дисперсных систем может происходить в результате физической и химической конденсации, а также при замене растворителя.

Физическая конденсация осуществляется при понижении температуры газовой среды, содержащей пары различных веществ. При выполнении необходимых условий образуются частицы или капли дисперсной фазы. Подобный процесс имеет место не только в объёме газа, но и на охлажденной твердой поверхности, которую помещают в более теплую газовую среду.

Конденсация определяется разностью химических потенциалов (μ i // – μ i /) < 0, которая изменяется в результате замены растворителя. В отличие от обычной физической конденсации при замене растворителя состав и свойства дисперсионной среды не остаются постоянными. В случае если спиртовые или ацетоновые растворы серы, фосфора, канифоли и некоторых других органических веществ влить в воду, то раствор становится пересыщенным, происходит конденсация и образуются частицы дисперсной фазы. Метод замены растворителя является одним из немногих, при помощи которых можно получить золи.

При химической конденсации происходит образование вещества с одновременным его пересыщением и конденсацией.

Методы получения ДИСПЕРСНЫХ СИСТЕМ - понятие и виды. Классификация и особенности категории "Методы получения ДИСПЕРСНЫХ СИСТЕМ" 2017, 2018.



error: