Как найти разность арифметической прогрессии формула. Арифметическая и геометрическая прогрессии

Или арифметическая - это вид упорядоченной числовой последовательности, свойства которой изучают в школьном курсе алгебры. В данной статье подробно рассмотрен вопрос, как найти сумму арифметической прогрессии.

Что это за прогрессия?

Прежде чем переходить к рассмотрению вопроса (как найти сумму арифметической прогрессии), стоит понять, о чем пойдет речь.

Любая последовательность действительных чисел, которая получается путем добавления (вычитания) некоторого значения из каждого предыдущего числа, называется алгебраической (арифметической) прогрессией. Это определение в переводе на язык математики принимает форму:

Здесь i - порядковый номер элемента ряда a i . Таким образом, зная всего одно начальное число, можно с легкостью восстановить весь ряд. Параметр d в формуле называется разностью прогрессии.

Можно легко показать, что для рассматриваемого ряда чисел выполняется следующее равенство:

a n = a 1 + d * (n - 1).

То есть для нахождения значения n-го по порядку элемента следует n-1 раз добавить разность d к первому элементу a 1 .

Чему равна сумма арифметической прогрессии: формула

Прежде чем приводить формулу для указанной суммы, стоит рассмотреть простой частный случай. Дана прогрессия натуральных чисел от 1 до 10, необходимо найти их сумму. Поскольку членов в прогрессии немного (10), то можно решить задачу в лоб, то есть просуммировать все элементы по порядку.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Стоит учесть одну интересную вещь: поскольку каждый член отличается от последующего на одно и то же значение d = 1, то попарное суммирование первого с десятым, второго с девятым и так далее даст одинаковый результат. Действительно:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Как видно, этих сумм всего 5, то есть ровно в два раза меньше, чем число элементов ряда. Тогда умножая число сумм (5) на результат каждой суммы (11), вы придете к полученному в первом примере результату.

Если обобщить эти рассуждения, то можно записать следующее выражение:

S n = n * (a 1 + a n) / 2.

Это выражение показывает, что совсем не обязательно суммировать подряд все элементы, достаточно знать значение первого a 1 и последнего a n , а также общего числа слагаемых n.

Считается, что впервые до этого равенства додумался Гаусс, когда искал решение на заданную его школьным учителем задачу: просуммировать 100 первых целых чисел.

Сумма элементов от m до n: формула

Формула, приведенная в предыдущем пункте, дает ответ на вопрос, как найти сумму арифметической прогрессии (первых элементов), но часто в задачах необходимо просуммировать ряд чисел, стоящих в середине прогрессии. Как это сделать?

Ответить на этот вопрос проще всего, рассматривая следующий пример: пусть необходимо найти сумму членов от m-го до n-го. Для решения задачи следует представить заданный отрезок от m до n прогрессии в виде нового числового ряда. В таком представлении m-й член a m будет первым, а a n станет под номер n-(m-1). В этом случае, применяя стандартную формулу для суммы, получится следующее выражение:

S m n = (n - m + 1) * (a m + a n) / 2.

Пример использования формул

Зная, как найти сумму арифметической прогрессии, стоит рассмотреть простой пример использования приведенных формул.

Ниже дана числовая последовательность, следует найти сумму ее членов, начиная с 5-го и заканчивая 12-м:

Приведенные числа свидетельствуют, что разность d равна 3. Используя выражение для n-го элемента, можно найти значения 5-го и 12-го членов прогрессии. Получается:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Зная значения чисел, стоящих на концах рассматриваемой алгебраической прогрессии, а также зная, какие номера в ряду они занимают, можно воспользоваться формулой для суммы, полученной в предыдущем пункте. Получится:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Стоит отметить, что это значение можно было получить иначе: сначала найти сумму первых 12 элементов по стандартной формуле, затем вычислить сумму первых 4 элементов по той же формуле, после этого вычесть из первой суммы вторую.

В математике любая организованная каким-либо способом совокупность чисел, которые следуют друг за другом, называется последовательностью. Из всех существующих последовательностей чисел выделяют два интересных случая: прогрессии алгебраическую и геометрическую.

Что представляет собой арифметическая прогрессия?

Сразу следует сказать, что алгебраическую прогрессию часто называют арифметической, поскольку ее свойства изучает ветвь математики - арифметика.

Эта прогрессия представляет собой такую последовательность чисел, в которой каждый следующий ее член отличается от предыдущего на некоторое постоянное число. Оно называется разностью алгебраической прогрессии. Для определенности обозначим его латинской буквой d.

Примером такой последовательности может быть следующая: 3, 5, 7, 9, 11 ..., здесь видно, что число 5 больше числа 3 на 2, 7 больше 5 тоже на 2, и так далее. Таким образом, в представленном примере d = 5-3 = 7-5 = 9-7 = 11-9 = 2.

Какие бывают арифметические прогрессии?

Характер этих упорядоченных последовательностей чисел во многом определяется знаком числа d. Выделяют следующие виды алгебраических прогрессий:

  • возрастающая, когда d положительное (d>0);
  • постоянная, когда d = 0;
  • убывающая, когда d отрицательное (d<0).

В примере, который приведен в предыдущем пункте, показана возрастающая прогрессия. Примером убывающей является следующая последовательность чисел: 10, 5, 0, -5, -10, -15 ... Постоянная прогрессия, как следует из ее определения, представляет собой совокупность одинаковых чисел.

n-й член прогрессии

Благодаря тому, что каждое последующее число в рассматриваемой прогрессии отличается на константу d от предыдущего, можно легко определить n-й ее член. Для этого нужно знать не только d, но и a 1 - первый член прогрессии. Применяя рекурсивный подход, можно получить формулу алгебраической прогрессии для нахождения n-го члена. Она имеет вид: a n = a 1 + (n-1)*d. Это формула является достаточно простой, и понять ее можно на интуитивном уровне.

Также не представляет никакой сложности ее использование. Например, в прогрессии, которая приведена выше (d=2, a 1 =3), определим 35-й ее член. Согласно формуле, он будет равен: a 35 = 3 + (35-1)*2 = 71.

Формула для суммы

Когда дана некоторая арифметическая прогрессия, то сумма ее первых n членов является часто возникающей задачей, наряду с определением значения n-го члена. Формула суммы алгебраической прогрессии записывается в следующем виде: ∑ n 1 = n*(a 1 +a n)/2, здесь значок ∑ n 1 говорит о том, что суммируются с 1-го по n-й член.

Приведенное выражение можно получить, прибегая к свойствам все той же рекурсии, однако существует более легкий способ доказательства его справедливости. Запишем первые 2 и последние 2 члена этой суммы, выразив их в числах a 1 , a n и d, и получим: a 1 , a 1 +d,...,a n -d, a n . Теперь заметим, что если сложить первый член с последним, то он будет точно равен сумме второго и предпоследнего члена, то есть a 1 +a n . Аналогичным способом можно показать, что эту же сумму можно получить, если сложить третий и предпредпоследний члены, и так далее. В случае парного количества чисел в последовательности получаем n/2 сумм, каждая из которых равна a 1 +a n . То есть получаем вышеприведенную формулу алгебраической прогрессии для суммы: ∑ n 1 = n*(a 1 +a n)/2.

Для непарного количества членов n получается аналогичная формула, если следовать описанным рассуждениям. Только нужно не забыть добавить оставшееся слагаемое, которое находится в центре прогрессии.

Покажем, как пользоваться приведенной формулой на примере простой прогрессии, которая была введена выше (3, 5, 7, 9, 11 ...). Например, необходимо определить сумму первых 15 ее членов. Для начала определим a 15 . Воспользовавшись формулой для n-го члена (см. предыдущий пункт), получаем: a 15 = a 1 + (n-1)*d = 3 + (15-1)*2 = 31. Теперь можно применить формулу суммы алгебраической прогрессии: ∑ 15 1 = 15*(3+31)/2 = 255.

Любопытно привести интересный исторический факт. Формулу для суммы арифметической прогрессии впервые получил Карл Гаусс (знаменитый немецкий математик XVIII века). Когда ему было всего 10 лет, то учитель задал задачу, найти сумму чисел от 1 до 100. Говорят, что маленький Гаусс решил эту задачу за несколько секунд, заметив, что попарно суммируя числа с начала и конца последовательности, всегда можно получить 101, а поскольку таких сумм 50, то он быстро выдал ответ: 50*101 = 5050.

Пример решения задачи

В качестве завершения темы алгебраической прогрессии приведем пример решения еще одной любопытной задачи, закрепив тем самым понимание рассматриваемой темы. Пусть дана некоторая прогрессия, для которой известна разность d = -3, а также ее 35-й член a 35 = -114. Необходимо найти 7-й член прогрессии a 7 .

Как видно из условия задачи, значение a 1 является неизвестным, поэтому напрямую формулой для n-го члена воспользоваться не получится. Также является неудобным способ рекурсии, который в ручную тяжело реализовать, и велика вероятность допустить ошибку. Поступим следующим образом: выпишем формулы для a 7 и a 35 , имеем: a 7 = a 1 + 6*d и a 35 = a 1 + 34*d. Вычтем из первого выражения второе, получим: a 7 - a 35 = a 1 + 6*d - a 1 - 34*d. Откуда следует: a 7 = a 35 - 28*d. Осталось подставить известные данные из условия задачи и записать ответ: a 7 = -114 - 28*(-3) = -30.

Геометрическая прогрессия

Чтобы раскрыть тему статьи полнее, приведем краткое описание еще одного вида прогрессии - геометрической. В математике под этим названием понимают последовательность чисел, в которой каждый последующий член отличается от предыдущего на некоторый множитель. Обозначим этот множитель буквой r. Он называется знаменателем рассматриваемого вида прогрессии. Примером этой последовательности чисел может быть следующая: 1, 5, 25, 125, ...

Как видно из приведенного определения, алгебраическая и геометрическая прогрессии схожи по своей идее. Отличие между ними заключается в том, что первая изменяется медленнее, чем вторая.

Геометрическая прогрессия также может быть возрастающей, постоянной и убывающей. Ее тип зависит от значения знаменателя r: если r>1, то имеет место возрастающая прогрессия, если r<1 - убывающая, наконец, если r = 1 - постоянная, которая в этом случае может также называться постоянной арифметической прогрессией.

Формулы геометрической прогрессии

Как и в случае алгебраической, формулы геометрической прогрессии сводятся к определению ее n-го члена и суммы n слагаемых. Ниже приведены эти выражения:

  • a n = a 1 *r (n-1) - эта формула следует из определения геометрической прогрессии.
  • ∑ n 1 = a 1 *(r n -1)/(r-1). Важно отметить, если r = 1, то приведенная формула дает неопределенность, поэтому ей пользоваться нельзя. В этом случае сумма n членов будет равна простому произведению a 1 *n.

Например, найдем сумму всего 10 членов последовательности 1, 5, 25, 125, ... Зная, что a 1 = 1 и r = 5, получаем: ∑ 10 1 = 1*(5 10 -1)/4 = 2441406. Полученное значение является наглядным примером того, насколько быстро растет геометрическая прогрессия.

Пожалуй, первым упоминанием об этой прогрессии в истории является легенда с шахматной доской, когда друг одного султана, обучив его игре в шахматы, попросил за свою услугу зерно. Причем количество зерна должно было быть следующим: на первую клетку шахматной доски необходимо положить одно зерно, на вторую в два раза больше, чем на первую, на третью в 2 раза больше, чем на вторую и так далее. Султан охотно согласился выполнить эту просьбу, но он не знал, что ему придется опустошить все закрома своей страны, чтобы сдержать данное слово.

Сумма арифметической прогрессии.

Сумма арифметической прогрессии - штука простая. И по смыслу, и по формуле. Но задания по этой теме бывают всякие. От элементарных до вполне солидных.

Сначала разберёмся со смыслом и формулой суммы. А потом и порешаем. В своё удовольствие.) Смысл суммы прост, как мычание. Чтобы найти сумму арифметической прогрессии надо просто аккуратно сложить все её члены. Если этих членов мало, можно складывать безо всяких формул. Но если много, или очень много... сложение напрягает.) В этом случае спасает формула.

Формула суммы выглядит просто:

Разберёмся, что за буковки входят в формулу. Это многое прояснит.

S n - сумма арифметической прогрессии. Результат сложения всех членов, с первого по последний. Это важно. Складываются именно все члены подряд, без пропусков и перескоков. И, именно, начиная с первого. В задачках, типа найти сумму третьего и восьмого членов, или сумму членов с пятого по двадцатый - прямое применение формулы разочарует.)

a 1 - первый член прогрессии. Здесь всё понятно, это просто первое число ряда.

a n - последний член прогрессии. Последнее число ряда. Не очень привычное название, но, в применении к сумме, очень даже годится. Дальше сами увидите.

n - номер последнего члена. Важно понимать, что в формуле этот номер совпадает с количеством складываемых членов.

Определимся с понятием последнего члена a n . Вопрос на засыпку: какой член будет последним, если дана бесконечная арифметическая прогрессия?)

Для уверенного ответа нужно понимать элементарный смысл арифметической прогрессии и... внимательно читать задание!)

В задании на поиск суммы арифметической прогрессии всегда фигурирует (прямо или косвенно) последний член, которым следует ограничиться. Иначе конечной, конкретной суммы просто не существует. Для решения не суть важно, какая задана прогрессия: конечная, или бесконечная. Не суть важно, как она задана: рядом чисел, или формулой n-го члена.

Самое главное - понимать, что формула работает с первого члена прогрессии до члена c номером n. Собственно, полное название формулы выглядит вот так: сумма n первых членов арифметической прогрессии. Количество этих самых первых членов, т.е. n , определяется исключительно заданием. В задании вся эта ценная информация частенько зашифровывается, да... Но ничего, в примерах ниже мы эти секреты пораскрываем.)

Примеры заданий на сумму арифметической прогрессии.

Прежде всего, полезная информация:

Основная сложность в заданиях на сумму арифметической прогрессии заключается в правильном определении элементов формулы.

Эти самые элементы составители заданий шифруют с безграничной фантазией.) Здесь главное - не бояться. Понимая суть элементов, достаточно просто их расшифровать. Разберём подробно несколько примеров. Начнём с задания на основе реального ГИА.

1. Арифметическая прогрессия задана условием: a n = 2n-3,5. Найдите сумму первых 10 её членов.

Хорошее задание. Лёгкое.) Нам для определения суммы по формуле чего надо знать? Первый член a 1 , последний член a n , да номер последнего члена n.

Где взять номер последнего члена n ? Да там же, в условии! Там сказано: найти сумму первых 10 членов. Ну и с каким номером будет последний, десятый член?) Вы не поверите, его номер - десятый!) Стало быть, вместо a n в формулу будем подставлять a 10 , а вместо n - десятку. Повторю, номер последнего члена совпадает с количеством членов.

Осталось определить a 1 и a 10 . Это легко считается по формуле n-го члена, которая дана в условии задачи. Не знаете, как это сделать? Посетите предыдущий урок, без этого - никак.

a 1 = 2·1 - 3,5 = -1,5

a 10 =2·10 - 3,5 =16,5

S n = S 10 .

Мы выяснили значение всех элементов формулы суммы арифметической прогрессии. Остаётся подставить их, да посчитать:

Вот и все дела. Ответ: 75.

Ещё задание на основе ГИА. Чуть посложнее:

2. Дана арифметическая прогрессия (a n), разность которой равна 3,7; a 1 =2,3. Найти сумму первых 15 её членов.

Сразу пишем формулу суммы:

Эта формулка позволяет нам найти значение любого члена по его номеру. Ищем простой подстановкой:

a 15 = 2,3 + (15-1)·3,7 = 54,1

Осталось подставить все элементы в формулу суммы арифметической прогрессии и посчитать ответ:

Ответ: 423.

Кстати, если в формулу суммы вместо a n просто подставим формулу n-го члена, получим:

Приведём подобные, получим новую формулу суммы членов арифметической прогрессии:

Как видим, тут не требуется n-й член a n . В некоторых задачах эта формула здорово выручает, да... Можно эту формулу запомнить. А можно в нужный момент её просто вывести, как здесь. Ведь формулу суммы и формулу n-го члена всяко надо помнить.)

Теперь задание в виде краткой шифровки):

3. Найти сумму всех положительных двузначных чисел, кратных трём.

Во как! Ни тебе первого члена, ни последнего, ни прогрессии вообще... Как жить!?

Придётся думать головой и вытаскивать из условия все элементы суммы арифметической прогрессии. Что такое двузначные числа - знаем. Из двух циферок состоят.) Какое двузначное число будет первым ? 10, надо полагать.) А последнее двузначное число? 99, разумеется! За ним уже трёхзначные пойдут...

Кратные трём... Гм... Это такие числа, которые делятся на три нацело, вот! Десятка не делится на три, 11 не делится... 12... делится! Так, кое-что вырисовывается. Уже можно записать ряд по условию задачи:

12, 15, 18, 21, ... 96, 99.

Будет ли этот ряд арифметической прогрессией? Конечно! Каждый член отличается от предыдущего строго на тройку. Если к члену прибавить 2, или 4, скажем, результат, т.е. новое число, уже не поделится нацело на 3. До кучи можно сразу и разность арифметической прогрессии определить: d = 3. Пригодится!)

Итак, можно смело записать кое-какие параметры прогрессии:

А какой будет номер n последнего члена? Тот, кто думает, что 99 - фатально заблуждается... Номера - они всегда подряд идут, а члены у нас - через тройку перескакивают. Не совпадают они.

Тут два пути решения. Один путь - для сверхтрудолюбивых. Можно расписать прогрессию, весь ряд чисел, и посчитать пальчиком количество членов.) Второй путь - для вдумчивых. Нужно вспомнить формулу n-го члена. Если формулу применить к нашей задаче, получим, что 99 - это тридцатый член прогрессии. Т.е. n = 30.

Смотрим на формулу суммы арифметической прогрессии:

Смотрим, и радуемся.) Мы вытащили из условия задачи всё необходимое для расчёта суммы:

a 1 = 12.

a 30 = 99.

S n = S 30 .

Остаётся элементарная арифметика. Подставляем числа в формулу и считаем:

Ответ: 1665

Ещё один тип популярных задачек:

4. Дана арифметическая прогрессия:

-21,5; -20; -18,5; -17; ...

Найти сумму членов с двадцатого по тридцать четвёртый.

Смотрим на формулу суммы и... огорчаемся.) Формула, напомню, считает сумму с первого члена. А в задаче нужно считать сумму с двадцатого... Не сработает формула.

Можно, конечно, расписать всю прогрессию в ряд, да поскладывать члены с 20 по 34. Но... как-то тупо и долго получается, правда?)

Есть более элегантное решение. Разобьём наш ряд на две части. Первая часть будет с первого члена по девятнадцатый. Вторая часть - с двадцатого по тридцать чётвёртый. Понятно, что если мы посчитаем сумму членов первый части S 1-19 , да сложим с суммой членов второй части S 20-34 , получим сумму прогрессии с первого члена по тридцать четвёртый S 1-34 . Вот так:

S 1-19 + S 20-34 = S 1-34

Отсюда видно, что найти сумму S 20-34 можно простым вычитанием

S 20-34 = S 1-34 - S 1-19

Обе суммы в правой части считаются с первого члена, т.е. к ним вполне применима стандартная формула суммы. Приступаем?

Вытаскиваем из условия задачи парметры прогрессии:

d = 1,5.

a 1 = -21,5.

Для расчёта сумм первых 19 и первых 34 членов нам нужны будут 19-й и 34-й члены. Считаем их по формуле n-го члена, как в задаче 2:

a 19 = -21,5 +(19-1)·1,5 = 5,5

a 34 = -21,5 +(34-1)·1,5 = 28

Остаётся всего ничего. От суммы 34 членов отнять сумму 19 членов:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Ответ: 262,5

Одно важное замечание! В решении этой задачи имеется очень полезная фишка. Вместо прямого расчёта того, что нужно (S 20-34), мы посчитали то, что, казалось бы, не нужно - S 1-19 . А уж потом определили и S 20-34 , отбросив от полного результата ненужное. Такой "финт ушами" частенько спасает в злых задачках.)

В этом уроке мы рассмотрели задачи, для решения которых достаточно понимать смысл суммы арифметической прогрессии. Ну и пару формул знать надо.)

Практический совет:

При решении любой задачи на сумму арифметической прогрессии рекомендую сразу выписывать две главные формулы из этой темы.

Формулу n-го члена:

Эти формулы сразу подскажут, что нужно искать, в каком направлении думать, чтобы решить задачу. Помогает.

А теперь задачи для самостоятельного решения.

5. Найти сумму всех двузначных чисел, которые не делятся нацело на три.

Круто?) Подсказка скрыта в замечании к задаче 4. Ну и задачка 3 поможет.

6. Арифметическая прогрессия задана условием: a 1 =-5,5; a n+1 = a n +0,5. Найдите сумму первых 24 её членов.

Непривычно?) Это рекуррентная формула. Про неё можно прочитать в предыдущем уроке. Не игнорируйте ссылку, такие задачки в ГИА частенько встречаются.

7. Вася накопил к Празднику денег. Целых 4550 рублей! И решил подарить самому любимому человеку (себе) несколько дней счастья). Пожить красиво, ни в чём себе не отказывая. Потратить в первый день 500 рублей, а в каждый последующий день тратить на 50 рублей больше, чем в предыдущий! Пока не кончится запас денег. Сколько дней счастья получилось у Васи?

Сложно?) Поможет дополнительная формула из задачи 2.

Ответы (в беспорядке): 7, 3240, 6.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.



error: