Использование жидкого кислорода. Безопасность при обращении с жидкими криогенными продуктами

СВОЙСТВА КИСЛОРОДА И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ

Кислород О 2 является наиболее распространенным элементом на земле. Он находится в большом количестве в виде химических соединений с различными веществами в земной коре (до 50% вес.), в соединении с водородом в воде (около 86% вес.) и в свободном состоянии в атмосферном воздухе в смеси главным образом с азотом в количестве 20,93% об. (23,15% вес.).

Кислород имеет большое значение в народном хозяйстве. Он широко применяется в металлургии; химической промышленности; для газопламенной обработки металлов, огневого бурения твердых горных пород, подземной газификации углей; в медицине и различных дыхательных аппаратах, например для высотных полетов, и в других областях.

В нормальных условиях кислород представляет собой газ без цвета, запаха и вкуса, не горючий, но активно поддерживающий горение. При весьма низких температурах кислород превращается в жидкость и даже твердое вещество.

Важнейшие физические константы кислорода следующие:

Молекулярный вес 32
Вес 1 м 3 при 0° С и 760 мм рт. ст. в кг 1,43
То же при 20° С и 760 мм рт. ст. в кг 1,33
Критическая температура в °С -118
Критическое давление в кгс/м 3 51,35
Температура кипения при 760 мм рт. ст. в °С -182,97
Вес 1 л жидкого кислорода при -182, 97 °С и 760 мм рт. ст. в кг.
1,13
Количество газообразного кислорода, получающегося из 1 л жидкого при 20 °С и 760 мм рт. ст. в л
850
Температура затвердевания при 760 мм рт. ст. в °С -218,4

Кислород обладает большой химической активностью и образует соединения со всеми химическими элементами, кроме редких газов. Реакции кислорода с органическими веществами имеют резко выраженный экзотермический характер. Так, при взаимодействии сжатого кислорода с жировыми или находящимися в мелкодисперсном состоянии твердыми горючими веществами происходит мгновенное их окисление и выделяющееся тепло способствует самовозгоранию этих веществ, что может быть причиной пожара или взрыва. Это свойство особенно необходимо учитывать при обращении с кислородной аппаратурой.

Одним из важных свойств кислорода является способность его образовывать в широких пределах взрывчатые смеси с горючими газами и парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры. Взрывчатыми являются и смеси воздуха с газо- или парообразными горючими.

Кислород может быть получен: 1) химическими способами; 2) электролизом воды; 3) физическим способом из воздуха.

Химические способы, заключающиеся в получении кислорода из различных веществ, малопроизводительны и в настоящее время имеют лишь лабораторное значение.

Электролиз воды, т. е. разложение ее на составляющие - водород и кислород, осуществляется в аппаратах, называемых электролизерами. Через воду, в которую для повышения электропроводности добавляется едкий натр NaOH, пропускается постоянный ток; кислород собирается на аноде, а водород - на катоде. Недостатком способа является большой расход электроэнергии: на 1 м 3 0 2 (кроме того, получается 2 м 3 Н 2) расходуется 12-15 квт. ч. Этот способ рационален при наличии дешевой электроэнергии, а также при получении электролитического водорода, когда кислород является отходом производства.

Физический способ заключается в разделении воздуха на составляющие методом глубокого охлаждения. Этот способ позволяет получать кислород практически в неограниченном количестве и имеет основное промышленное значение. Расход электроэнергии на 1 м 3 О 2 составляет 0,4-1,6 квт. ч, в зависимости от типа установки.

ПОЛУЧЕНИЕ КИСЛОРОДА ИЗ ВОЗДУХА

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем объемном их содержании: азота - 78,09%, кислорода - 20,93%, аргона - 0,93%. Кроме того, в нем содержится около 0,03% углекислого газа и малые количества редких газов, водорода, закиси азота и др.

Главная задача при получении кислорода из воздуха заключается в разделении воздуха на кислород и азот. Попутно производится отделение аргона,-применение которого в специальных способах сварки непрерывно возрастает, а также и редких газов, играющих важную роль в ряде производств. Азот имеет некоторое применение в сварке как защитный газ, в медицине и других областях.

Сущность способа заключается в глубоком охлаждении воздуха с обращением его в жидкое состояние, что при нормальном атмосферном давлении может быть достигнуто в интервале температур от —191,8° С (начало сжижения) до -193,7° С (окончание сжижения).

Разделение жидкости на кислород и азот осуществляется путем использования разности температур их кипения, а именно: Т кип. о2 = -182,97° С; Т кип.N2 = -195,8° С (при 760 мм рт. ст.).

При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения и по мере его выделения жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией.

Для производства кислорода из воздуха имеются специализированные предприятия, оснащенные высокопроизводительными установками. Кроме того, на крупных металлообрабатывающих предприятиях имеются свои кислородные станции.

Низкие температуры, необходимые для сжижения воздуха, получают с помощью так называемых холодильных циклов. Ниже кратко рассматриваются основные холодильные циклы, используемые в современных установках.

Холодильный цикл с дросселированием воздуха основан на эффекте Джоуля—Томсона, т. е. резком снижении температуры газа при свободном его расширении. Схема цикла приведена на рис. 2.

Воздух сжимается в многоступенчатом компрессоре 1 до 200 кгс/см 2 и затем проходит через холодильник 2 с проточной водой. Глубокое охлаждение воздуха происходит в теплообменнике 3 обратным потоком холодного газа из сборника жидкости (ожижителя) 4. В результате расширения воздуха в дроссельном вентиле 5 он дополнительно охлаждается и частично сжижается.

Давление в сборнике 4 регулируется в пределах 1—2 кгс/см 2 . Жидкость периодически сливается из сборника в специальные емкости через вентиль 6. Несжиженная часть воздуха отводится через теплообменник, производя охлаждение новых порций поступающего воздуха.

Охлаждение воздуха до температуры сжижения происходит постепенно; при включении установки имеется пусковой период, в течение которого сжижения воздуха не наблюдается, а происходит лишь охлаждение установки. Этот период занимает несколько часов.

Достоинством цикла является его простота, а недостатком — относительно высокий расход электроэнергии — до 4,1 квт. ч на 1 кг сжиженного воздуха при давлении в компрессоре 200 кгс/см 2 ; при меньшем давлении удельный расход электроэнергии резко возрастает. Данный цикл применяется в установках малой и средней производительности для получения газообразного кислорода.

Несколько более сложным является цикл с дросселированием и предварительным аммиачным охлаждением воздуха.

Холодильный цикл среднего давления с расширением в детандере основан на понижении температуры газа при расширении с отдачей внешней работы. Кроме того, используется и эффект Джоуля— Томсона. Схема цикла приведена на рис. 3.

Воздух сжимается в компрессоре 1 до 20-40 кгс/см 2 , проходит через холодильник 2 и затем через теплообменники 3 и 4. После теплообменника 3 большая часть воздуха (70-80%) направляется в поршневую расширительную машину-детандер 6, а меньшая часть воздуха (20-30%) идет на свободное расширение в дроссельный вентиль 5 и далее сборник 7, имеющий кран 8 для слива жидкости. В детандере 6

воздух, уже охлажденный в первом теплообменнике, производит работу - толкает поршень машины, давление его падает до 1 кгс/см 2 , за счет чего резко снижается температура. Из детандера холодный воздух, имеющий температуру около —100° С, выводится наружу через теплообменники 4 и 3, охлаждая поступающий воздух. Таким образом, детандер обеспечивает весьма эффективное охлаждение установки при сравнительно небольшом давлении в компрессоре. Работа детандера используется полезно и это частично компенсирует затрату энергии на сжатие воздуха в компрессоре.

Достоинствами цикла являются: сравнительно небольшое давление сжатия, что упрощает конструкцию компрессора и повышенная холодопроизводительность (благодаря детандеру), что обеспечивает устойчивую работу установки при отборе кислорода в жидком виде.

Холодильный цикл низкого давления с расширением в турбодетандере, разработанный акад. П. Л. Капицей, основан на применении воздуха низкого давления с получением холода только за счет расширения этого воздуха в воздушной турбине (турбодетандере) с производством внешней работы. Схема цикла приведена на рис. 4.

Воздух сжимается турбокомпрессором 1 до 6-7 кгс/см 2 , охлаждается водой в холодильнике 2 и поступает в регенераторы 3 (теплообменники), где охлаждается обратным потоком холодного воздуха. До 95% воздуха после регенераторов направляется в турбодетандер 4, расширяется до абсолютного давления 1 кгс/см 2 с выполнением внешней работы и при этом резко охлаждается, после чего он подается в трубное пространство конденсатора 5 и конденсирует остальную часть сжатого воздуха (5%), поступающую в межтрубное пространство. Из конденсатора 5 основной поток воздуха направляется в регенераторы и охлаждает поступающий воздух, а жидкий воздух пропускается через дроссельный вентиль 6 в сборник 7, из которого сливается через вентиль 8. На схеме показан один регенератор, а в действительности их ставят несколько и включают поочередно.

Достоинствами цикла низкого давления с турбодетандером являются: более высокий к. п. д. турбомашин по сравнению с машинами поршневого типа, упрощение технологической схемы, повышение надежности и взрывобезопасности установки. Цикл применяется в установках большой производительности.

Разделение жидкого воздуха на составляющие осуществляется посредством процесса ректификации, сущность которого состоит в том, что образующуюся при испарении жидкого воздуха парообразную смесь азота и кислорода пропускают через жидкость с меньшим содержанием кислорода. Поскольку кислорода в жидкости меньше, а азота больше, то она имеет более низкую температуру, чем проходящий через нее пар, а это вызывает конденсацию кислорода из пара и обогащение им жидкости с одновременным испарением из жидкости азота, т. е. обогащение им паров над жидкостью.

Представление о сущности процесса ректификации может дать приведенная на рис. 5 упрощенная схема процесса многократного испарения и конденсации жидкого воздуха.

Принимаем, что воздух состоит только из азота и кислорода. Представим, что имеется несколько соединенных друг с другом сосудов (I—V), в верхнем находится жидкий воздух с содержанием 21% кислорода. Благодаря ступенчатому расположению сосудов жидкость будет стекать вниз и при этом постепенно обогащаться кислородом, а температура ее будет повышаться.

Допустим, что в сосуде II находится жидкость, содержащая 30% 0 2 , в сосуде III — 40%, в сосуде IV — 50% и в сосуде V — 60% кислорода.

Для определения содержания кислорода в паровой фазе воспользуемся специальным графиком — рис. 6, кривые которого указывают содержание кислорода в жидкости и паре при различных давлениях.

Начнем испарять жидкость в сосуде V при абсолютном давлении 1 кгс/см 2 . Как видно из рис. 6, над жидкостью в этом сосуде, состоящей из 60% 0 2 и 40% N 2 , может находиться равновесный по составу пар, содержащий 26,5% 0 2 и 73,5% N 2 , имеющий такую же температуру, что и жидкость. Подаем этот пар в сосуд IV, где жидкость содержит только 50% 0 2 и 50% N 2 и поэтому будет более холодной. Из рис. 6 видно, что над этой жидкостью пар может содержать лишь 19% 0 2 и 81% N 2 , и только в этом случае его температура будет равна температуре жидкости в данном сосуде.

Следовательно, подводимый в сосуд IV из сосуда V пар, содержащий 26,5% О 2 , имеет более высокую температуру, чем жидкость в сосуде IV; поэтому кислород пара конденсируется в жидкости сосуда IV, а часть азота из нее будет испаряться. В результате жидкость в сосуде IV обогатится кислородом, а пар над нею - азотом.

Аналогично будет происходить процесс и в других сосудах и, таким образом, при сливе из верхних сосудов в нижние жидкость обогащается кислородом, конденсируя его из поднимающихся паров и отдавая им свой азот.

Продолжая процесс вверх, можно получить пар, состоящий почти из чистого азота, а в нижней части - чистый жидкий кислород. В действительности процесс ректификации, протекающий в ректификационных колоннах кислородных установок, значительно сложнее описанного, но принципиальное его содержание такое же.

Независимо от технологической схемы установки и вида холодильного цикла процесс производства кислорода из воздуха включает следующие стадии:

1) очистка воздуха от пыли, паров воды и углекислоты. Связывание СО 2 достигается пропусканием воздуха через водный раствор NaOH;

2) сжатие воздуха в компрессоре с последующим охлаждением в холодильниках;

3) охлаждение сжатого воздуха в теплообменниках;

4) расширение сжатого воздуха в дроссельном вентиле или детандере для его охлаждения и сжижения;

5) сжижение и ректификация воздуха с получением кислорода и азота;

6) слив жидкого кислорода в стационарные цистерны и отвод газообразного в газгольдеры;

7) контроль качества получаемого кислорода;

8) наполнение жидким кислородом транспортных резервуаров и наполнение баллонов газообразным кислородом.

Качество газообразного и жидкого кислорода регламентируется соответствующими ГОСТами.

По ГОСТу 5583-58 выпускается газообразный технический кислород трех сортов: высший — с содержанием не менее 99,5% О 2 , 1-й — не менее 99,2% О 2 и 2-й — не менее 98,5% О 2 , остальное — аргон и азот (0,5—1,5%). Содержание влаги не должно превышать 0,07 г/ж 3 . Кислород, получаемый электролизом воды, не должен содержать водорода более 0,7% по объему.

По ГОСТу 6331-52 выпускается жидкий кислород двух сортов: сорт А с содержанием не менее 99,2% О 2 и сорт Б с содержанием не менее 98,5% О 2 . Содержание ацетилена в жидком кислороде не должно превышать 0,3 см 3 /л.

Применяемый для интенсификации различных процессов на предприятиях металлургической, химической и других отраслей промышленности технологический кислород содержит 90—98% О 2 .

Контроль качества газообразного, а также и жидкого кислорода производится непосредственно в процессе производства с помощью специальных приборов.

Администрация Общая оценка статьи: Опубликовано: 2012.06.01

Жидкий кислород представляет собой жидкость бледно-синего цвета, которая обладает умеренными криогенными свойствами. Основным источником получения кислорода является атмосферный воздух. Сначала происходит его сжижение с последующим разделением на кислород и азот.

Сфера применения жидкого кислорода:

  • в металлургической отрасли кислород применяется при выплавке свинца, цинка, никеля, циркония и других цветных металлов. Кроме того, жидким кислородом интенсифицируют процессы обжига сырья;
  • в оборонной промышленности жидкий вид кислорода используют в качестве окислительного компонента ракетного топлива. Как правило, кислород применяют в комбинации с жидким водородом или керосином;
  • в современной медицине кислород применяют для заправки передвижных кислородно-ингаляционных установок.

Помимо этого, жидкий вид кислорода активно используют при проведении сварочно-режущих работ по металлу.

Для получения кислорода применяют фракционную перегонку воздуха. Это достаточно сложный процесс, так как жидкий кислород создается с большим расходом энергии. Чаще всего установки с кислородом устанавливаются на ремонтно-механических, машиностроительных и других предприятиях, испытывающих постоянную потребность в жидком кислороде.

Жидкий кислород имеет голубоватый, небесный цвет. Аналогия с цветом неба неслучайна: в воздухе содержится 21% этого газа.
Переход из газообразного в жидкое состояние происходит при охлаждении до -119 °С и сжатии до 50 атмосфер.

В промышленных масштабах жидкий кислород используется для получения больших объемов газа в металлургии, медицине и пищевой промышленности.

Подразделяется на технический и медицинский.

Выгоды использования жидкого кислорода

  1. Отсутствие расходов на обслуживание и эксплутацию баллонного парка: покупку, хранение, учет, ремонт, доставку.
  2. Снижение рисков, связанных с безопасностью работы.
  3. Удобство и простота эксплуатации, обслуживания.
  4. Возможность транспортировать по трудопроводам при низких температурах окружающей среды.

Наши преимущества

Собственное производство
«Диоксид» – ведущий в России завод-производитель технических газов, криогенных жидкостей и высокотехнологичного криогенного оборудования с 2005 года. За это время мы накопили колоссальный опыт, полностью наладили и довели до автоматизации процессы, связанные с поставками криогенных жидкостей нашим клиентам. Все это позволяет нашим клиентам приобретать качественную продукцию на выгодных условиях в сжатые сроки.

Оперативная доставка
Нами разработана отлаженная система доставки криогенных жидкостей специализированным транспортом по России и странам СНГ.
Доставка осуществляется в удобное для вас время транспортом собственного автомобильного парка, с соблюдением всех правил перевозки.

Гарантия высокого качества
Качество продукции подтверждено паспортом и проходит проверку на соответствие ГОСТ в лаборатории «Диоксид».

Комплексный подход
Вы можете приобрести из наличия или оформить под заказ оборудование, необходимое при работе с криогенными жидкостями: сосуды Дьюара, металлорукава высокого давления, установки для газификации, емкости для хранения и транспортировки криогенных жидкостей, установки для обезжиривания резурвуаров, испарители, газовые рампы. Сервисный центр «Диоксид» выполняет ремонтно-профилактические работы по обслуживанию криогенного оборудования.


Чтобы жидкий кислород при хранении не терял параметров чистоты, эксперты рекомендуют проводить обезжиривание резервуаров не менее 1 раза в год. УОР – установка обезжиривания резервуаров – это то, что вам нужно, если у вас собственный большой парк емкостей. Это ваша независимость от сервисных компаний.

Полезная информация

Жидкий кислород может вызвать хрупкость материалов, которые находятся с ним в соприкосновении. Он также является очень мощным окислительным агентом: органическое вещество быстро сгорает в его среде с большим выделением тепла. Более того, некоторые из органических веществ, будучи пропитанными жидким кислородом, имеют свойство непредсказуемо взрываться, при наличии масляной среды.

Жидкий кислород магнитится, вещество можно переместить с помощью сильного магнита.

Сочетание жидких кислорода и водорода образуют ракетное топливо. А пропитав жидким кислородом торф или опилки, можно получить взрывчатку.

Хранение и транспортировка жидкого кислорода

Для хранения и перевозки, в зависимости от перевозимых объемов и задач, используются 3 вида емкостей, где главную роль выполняет качественная экранно-вакуумная изоляция. Как и на газовых баллонах, сосуд имеет окраску и надпись, соответствующую хранимому продукту. В случае, если необходимо использовать емкость под другую жидкость, то перед наполнением проводят комплекс работ. Например, чтобы наполнить кислород в емкость, ранее используемую под азот, внутренние полости и испаритель обезжиривают.

Криоцилиндры удобно и выгодно использовать на производствах с месячным расходом технических газов свыше 50 баллонов. Ёмкости выпускаются объемом от 175 до 1000 литров.

Внутренняя оболочка криоцилиндров выполнена из нержавеющей стали и не вступает в реакции с газами, а значит, что обеспечивает чистоту продукта.

Криоцилиндр емкостью 1000 литров по объёму газов заменяет около 136 баллонов 40 л. соответственно. Заправляя всего один криогенный цилиндр, минимизируются расходы, связанные с доставкой, заправкой, ремонтом баллонов. Также освобождаются производственные площади, ранее предназначенные для хранения баллонного парка.

Где бы мы ни находились, нас всюду окружает кислород воздуха.

Почему же мы не замечаем и не чувствуем его? Кислород, азот, аргон и другие газы, входящие в состав воздуха, бесцветны и не имеют ни запаха, ни вкуса. Газообразный воздух нельзя ни видеть, ни ощущать.

Воздух из газообразного состояния можно перевести в жидкое. Одновременно с основной массой воздуха - азотом - в жидкое состояние перейдут кислород и большинство других газов, входящих в его состав.

Чтобы газообразный кислород превратить в жидкость, его нужно сжать до 50 атмосфер и охладить до -119°.

Жидкий кислород можно получить и при атмосферном давлении, но для этого нужно газообразный кислород охладить до температуры -183°. При более сильном охлаждении, до температуры -220°, жидкий кислород затвердевает и превращается в снегообразную массу.

Если на некоторое время в жидкий кислород поместить кусочек резины, она потеряет свою эластичность и под ударом разлетится на мелкие части.

Такую же хрупкость приобретает и цинковая пластинка, охлажденная в жидком кислороде до температуры -183°. Жидкая ртуть при такой температуре превращается в твердую массу, которую можно ковать, как свинец, а свинец приобретает способность звенеть, как бронзовый колокольчик.

Жидкий кислород имеет голубоватый цвет. Его можно легко переливать из сосуда в сосуд. При переливании жидкий кислород «парит». Но это не пары кислорода, а пары воды. Жидкий кислород, испаряясь, поглощает много тепла из окружающего воздуха. Воздух сильно охлаждается, и влага, находящаяся в воздухе, конденсируется, образуя туман. Этот туман и создает впечатление пара, исходящего из самой жидкости.

Температура кипения жидкого кислорода равна -183°.

Если фарфоровый стакан с жидким кислородом вынести зимой на мороз 30-40°, он будет кипеть более бурно, чем вода на самом сильном огне газовой плиты.

При комнатной температуре испарение жидкого кислорода идет еще энергичнее, и он быстро переходит в газообразное состояние.

Чтобы использовать жидкий кислород, его необходимо сохранить. Как же заставить эту бурно кипящую жидкость не так быстро испаряться?

Для этого служат специальные сосуды, в которых легко удается «укротить» эту быстро испаряющуюся жидкость.

Сосуд для хранения жидкого кислорода представляет собой цилиндр с двойными стенками. Внутренние стороны стенок обычно покрывают тонким слоем серебра. Воздух между стенками сосуда выкачивается.

Разреженные газы плохо проводят тепло, а зеркальная поверхность серебра хорошо отражает его. Таким образом, жидкий кислород, который находится в сосуде, изолирован от внешнего тепла, что обеспечивает сохранение жидкого кислорода в течение одних-двух суток.

При испарении жидкого кислорода объем его увеличивается почти в 800 раз. Из кубического сантиметра жидкого кислорода образуется около 800 кубических сантиметров газообразного.

Хранить жидкий кислород в закрытых сосудах опасно: внутри сосуда может образоваться большое давление, приводящее к взрыву. Поэтому сосуды для хранения жидкого кислорода сверху открыты. Воздух, находящийся над жидкостью, сильно охлаждается и предохраняет кислород от наружного тепла, замедляя дальнейшее испарение.

Для перевозки небольших количеств жидкого кислорода используют металлические емкостью 15-25 литров.

Металлические сосуды состоят из двух шаров или цилиндров, вставленных друг в друга. Внутренний шар или цилиндр имеет высокое и узкое горло, через которое сосуд заполняется жидким кислородом. Горло всегда остается открытым. Из пространства между стенками сосуда воздух выкачан, и создан высокий вакуум, то есть сильное разрежение.

Чтобы поддержать высокий вакуум, часть пространства между стенками заполняется силикагелем, способным при низкой температуре поглощать количество газа в сотни раз больше своего собственного объема. Если через стенки или через места спайки со временем просочится небольшая часть воздуха, он поглотится силикагелем и разрежение не уменьшится. Высокий вакуум обеспечивает постоянную изоляцию сосуда от внешнего тепла и дает возможность в течение двух и более суток сохранять в нем жидкий кислород. Такие сосуды обычно помещают в железные цилиндры.

Пространство между сосудом и наружным цилиндром заполняют теплоизоляционным материалом. Для переноски на наружном цилиндре имеются ручки.

Большие количества жидкого кислорода перевозятся по железной дороге и автотранспортом в специальных цистернах или танках. Они хорошо изолированы от внешнего тепла. Емкость транспортных танков различна: от 1 тысячи до 10 тысяч литров. Цистерны, в которых жидкий кислород перевозят по железной дороге, вмещают до нескольких десятков тонн.

Жидкий кислород можно получить из жидкого воздуха, который образуется при низких температурах и высоком давлении.

Высокое давление создают в машинах, которые называются компрессорами. Их приводят в движение электродвигатели.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .


Короткий путь http://bibt.ru

Глава II. Сварочные материалы.

§ 1. Кислород. Газообразный кислород. Жидкий кислород.

Высокотемпературное сварочное пламя, необходимое для газопламенной обработки, образуется при сгорании горючих газов или жидкостей в смеси с техническим кислородом.

Газообразный кислород. При нормальной температуре и давлении кислород представляет собой газ без цвета, запаха и вкуса. При очень низких температурах газообразный кислород может превратиться в жидкость и даже в твердое вещество. Кислород не горит, но активно поддерживает горение, при котором выделяется значительное количество тепла. При соединении сжатого кислорода с маслами, жирами и другими горючими веществами может произойти самовоспламенение Соединение его с горючими газами или парами горючих жидкостей при наличии открытого огня или даже искры может привести к взрыву.

Технический газообразный кислород для газопламенной обработки выпускается трех сортов ГОСТ 5583-68*:

1-го сорта, содержащего не менее 99,7% чистого кислорода (по объему).

2-го сорта - не менее 99,5% и 3-го - не менее 99,2%.

Примесями в кислороде являются азот, аргон, углекислый газ, водяные пары и другие составляющие атмосферного воздуха.

Жидкий кислород. При температуре ниже -183° С и нормальном давлении газообразный кислород превращается в голубоватую, подвижную и легкоиспаряющуюся жидкость. При этом занимаемый газом объем уменьшается примерно в 850 раз. При нагревании жидкий кислород снова превращается в газ. Жидкий кислород выпускается двух сортов (ГОСТ 6331-68): сорт А с содержанием не менее 99,2% кислорода и сорт Б с содержанием не менее 98,5% кислорода. В жидком состоянии кислород находится только при получении, хранении и транспортировке. Для газопламенной обработки его превращают снова в газообразное состояние.



error: