Неравномерное движение точки. Неравномерное движение

Средняя скорость. В § 9 мы говорили, что утверждение о равномерности данного движения справедливо только с той степенью точности, с которой произведены измерения. Например, применив секундомер, можно обнаружить, что движение поезда, представлявшееся при грубом измерении равномерным, оказывается неравномерным при более тонком измерении.

Но когда поезд подходит к станции, мы обнаружим неравномерность его движения даже без секундомера. Даже грубые измерения покажут нам, что промежутки времени, за которые поезд проходит расстояния от одного телеграфного столба до другого, становятся все больше и больше. С той малой степенью точности, которую дает измерение времени по часам, движение поезда на перегоне равномерно, а при подходе к станции - неравномерно. Поместим на игрушечный заводной автомобиль капельницу, заведем его и пустим катиться по столу. В середине движения расстояния между каплями оказываются одинаковыми (движение равномерно), но затем, когда завод приблизится к концу, будет заметно, что капли ложатся все ближе одна к другой - движение неравномерно (рис. 25).

Рис. 25. Следы капель, равномерно падающих из капельницы, помещенной на движущийся заводной автомобиль, перед окончанием завода

При неравномерном движении нельзя говорить о какой-то определенной скорости, так как отношение пройденного пути к соответственному промежутку времени не одинаково для разных участков, как это имело место для равномерного движения. Если, однако, нас интересует движение только на каком-либо определенном участке пути, то это движение в целом можно охарактеризовать, введя понятие средней скорости движения: средней скоростью неравномерного движения на данном участке пути называют отношение длины этого участка к промежутку времени, за который этот участок пройден:

Отсюда видно, что средняя скорость равна скорости такого равномерного движения, при котором тело прошло бы данный участок пути за тот же промежуток времени, что и при действительном движении.

Как и в случае равномерного движения, можно пользоваться формулой для определения пути, пройденного за данный промежуток времени при определенной средней скорости, и формулой для определения времени, за которое пройден данный путь с данной средней скоростью. Но пользоваться этими формулами можно только для того участка пути и для того промежутка времени, для которых эта средняя скорость была рассчитана. Например, зная среднюю скорость на участке пути АВ и зная длину АВ, можно определить время, за которое был пройден этот участок, но нельзя найти время, за которое была пройдена половина участка АВ, так как средняя скорость на половине участка при неравномерном движении, вообще говоря, не будет равна средней скорости на всем участке.

Если для любых участков пути средняя скорость оказалась одинаковой, то это значит, что движение равномерное и средняя скорость равна скорости этого равномерного движения.

Если средняя скорость известна за отдельные последовательные промежутки времени, то можно найти среднюю скорость и за суммарное время движения. Пусть, например, поезд двигался в течение двух часов, причем его средняя скорость за первые 10 мин равнялась 18 км/ч, за следующие полтора часа - 50 км/ч и за остальное время - 30 км/ч. Найдем пути, пройденные за отдельные промежутки времени. Они будут равны км; км; км. Значит, общий путь, пройденный поездом, есть км. Поскольку весь этот путь был пройден за два часа, искомая средняя скорость км/ч.

Из этого примера видно, как вычислять среднюю скорость и в общем случае, когда известны средние скорости движения с которыми тело двигалось в течение последовательных промежутков времени . Средняя скорость всего движения выразится формулой

.

Важно отметить, что в общем случае средняя скорость не равна среднему значению от средних скоростей на отдельных участках пути.

14.1. Покажите, что средняя скорость на всем пути будет больше наименьшей из средних скоростей на отдельных участках и меньше наибольшей из них.

14.2. Поезд проходит первые 10 км со средней скоростью 30 км/ч, вторые 10 км - со средней скоростью 40 км/ч, третьи 10 км - со средней скоростью 60 км/ч. Какова была средняя скорость поезда на всем 30-ти километровом отрезке пути?

Средняя скорость. В § 9 мы говорили, что утверждение о равномерности данного движения справедливо только с той степенью точности, с которой произведены измерения. Например, применив секундомер, можно обнаружить, что движение поезда, представлявшееся при грубом измерении равномерным, оказывается неравномерным при более тонком измерении.

Но когда поезд подходит к станции, мы обнаружим неравномерность его движения даже без секундомера. Даже грубые измерения покажут нам, что промежутки времени, за которые поезд проходит расстояния от одного телеграфного столба до другого, становятся все больше и больше. С той малой степенью точности, которую дает измерение времени по часам, движение поезда на перегоне равномерно, а при подходе к станции - неравномерно. Поместим на игрушечный заводной автомобиль капельницу, заведем его и пустим катиться по столу. В середине движения расстояния между каплями оказываются одинаковыми (движение равномерно), но затем, когда завод приблизится к концу, будет заметно, что капли ложатся все ближе одна к другой - движение неравномерно (рис. 25).

При неравномерном движении нельзя говорить о какой-то определенной скорости, так как отношение пройденного пути к соответственному промежутку времени не одинаково для разных участков , как это имело место для равномерного движения. Если, однако, нас интересует движение только на каком-либо определенном участке пути, то это движение в целом можно охарактеризовать, введя понятие средней скорости движения :средней скоростью неравномерного движения на данном участке пути называют отношение длины этого участка к промежутку времени, за который этот участок пройден :

. (14.1)

Отсюда видно, что средняя скорость равна скорости такого равномерного движения, при котором тело прошло бы данный участок пути за тот же промежуток времени, что и при действительном движении.

Как и в случае равномерного движения, можно пользоваться формулой для определения пути, пройденного за данный промежуток времени при определенной средней скорости, и формулой для определения времени, за которое пройден данный путь с данной средней скоростью. Но пользоваться этими формулами можно только для того участка пути и для того промежутка времени, для которых эта средняя скорость была рассчитана. Например, зная среднюю скорость на участке пути АВ и зная длину АВ, можно определить время, за которое был пройден этот участок, но нельзя найти время, за которое была пройдена половина участка АВ, так как средняя скорость на половине участка при неравномерном движении, вообще говоря, не будет равна средней скорости на всем участке.

Если для любых участков пути средняя скорость оказалась одинаковой, то это значит, что движение равномерное и средняя скорость равна скорости этого равномерного движения.

Если средняя скорость известна за отдельные последовательные промежутки времени, то можно найти среднюю скорость и за суммарное время движения. Пусть, например, поезд двигался в течение двух часов, причем его средняя скорость за первые 10 мин равнялась 18 км/ч, за следующие полтора часа - 50 км/ч и за остальное время - 30 км/ч. Найдем пути, пройденные за отдельные промежутки времени. Они будут равны км; км; км. Значит, общий путь, пройденный поездом, есть км. Поскольку весь этот путь был пройден за два часа, искомая средняя скорость км/ч.

Из этого примера видно, как вычислять среднюю скорость и в общем случае, когда известны средние скорости движения с которыми тело двигалось в течение последовательных промежутков времени . Средняя скорость всего движения выразится формулой

Транскрипт

1 Урок 3. Неравномерное прямолинейное движение Мгновенная скорость Рассмотрим случай, когда тело движется по прямой, но его движение не является равномерным. Например, автомобиль ускоряется или тормозит. Пусть в момент времени тело находилось в точке с координатой, а в момент времени + в точке с координатой +Δ (см. рис.). r + Δ X Среднее значение проекции скорости точки в интервале от до + равно Δ отношению. Если теперь рассмотреть меньший промежуток времени, Δ то перемещение тела также будет меньше по модулю, а отношение будет иметь какое-то другое значение. Если и дальше уменьшать промежуток времени, то значение средней скорости на этом промежутке практически перестанет изменяться. Полученная величина является мгновенной проекцией скорости тела в момент времени. В общем случае изменяться может как модуль, так и направление вектора скорости. Например, скорость камня, брошенного под некоторым углом к горизонту изменяется как по модулю, так и по направлению. A υ r ср r s r B B Пусть тело (материальная точка) движется вдоль траектории, показанной на рисунке. В момент времени тело находится в точке А, а в момент + в точке B. Найдем среднюю скорость тела в интервале от до +, используя определение: r s r ср. Направление вектора r ср совпадает с направлением вектора перемещения s r. Будем теперь уменьшать величину, при этом модуль вектора перемещения также станет уменьшаться, а его направление приближаться к направлению касательной к траектории в точке А. Вектор r, к которому в пределе стремится средняя скорость r, называют мгновенной скоростью тела в точке А. В ср любой точке траектории тела мгновенная скорость (часто ее называют просто скоростью) направлена по касательной к траектории в данной точке. Мгновенная скорость это векторная величина, равная отношению перемещения тела Δ s r к промежутку времени, в течение которого произошло это перемещение, при стремлении: r Δ s r Δ

2 Равнопеременное движение Самом простым видом неравномерного движения является равнопеременное движение такое движение тела, при котором скорость тела за любые равные промежутки времени изменяется одинаково. Величина, характеризующая быстроту изменения скорости, называется ускорением. Ускорение равнопеременного движения это векторная величина, равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло: r a Δ r При этом если векторы скорости и ускорения точки имеют одинаковое r r направление (a), то движение называется равноускоренным. Если они имеют противоположное направление (r a r), то движение равнозамедленное. Если в начальный момент скорость тела была равна r, то по определению ускорения скорость тела в момент времени равна r r + a r. Перемещение, координата, средняя скорость при равнопеременном прямолинейном движении При прямолинейном равномерном движении проекция скорости постоянная величина, а координата точки зависит от времени линейно: +. График функции () представляет собой горизонтальную прямую (см. рис.). Изменение координаты тела за промежуток времени от до равно s Δ, то есть численно равно площади заштрихованного прямоугольника. Заметим, что изменение коорднаты это и есть проекция перемещения тела: Δ s. В случае равнопеременного движения проекция скорости тела линейно зависит от времени: () + a, где это проекция начальной скорости на ось Х, a проекция ускорения на эту ось (см. рис.). Рассмотир такой малый промежуток времени, в течение которого скорость можно считать постоянной. Изменение координаты тела за этот промежуток численно равно площади белого прямоугольника на рисунке. Если разбить время движения на много промежутков величиной, то изменение координаты за все время окажется численно равным сумме площадей большого количества прямоугольников. Эта сумма при разбиении на все большее число промежутков стремится к площади S заштрихованной трапеции ОАВС: S (OA+BC) OC/. Тогда + Δ

3 B A + + a a Поскольку () + a, то Δ +. Эта формула выведена для случая, когда >, a >, однако она справедлива и для произвольных знаков величин, a. Таким образом, получена зависимость координаты от времени (закон движения): a + + Координата точки зависит от времени не линейно, а по квадратичному закону. Графиком зависимости () является парабола. Если a >, то ветви параболы направлены вверх, если a < то вниз. Проекция средней скорости тела при равнопеременном движении s + ср равна среднему арифметическому начальной и конечной проекции скорости. При решении многих задач полезна формула для перемещения, не содержащая времени в явном виде. Из зависимости проекции скорости от времени () + a выразим время a и подставим в выражение для s: s Δ + C Задача. Двигаясь равноускоренно, за восьмую секунду после начала движения тело прошло путь s 5 м. Найдите время, за которое тело прошло путь l 9 м. Решение. Обозначим ускорение тела через a, а промежуток времени в секунду через. Так как начальная скорость тела равна нулю, то за время c тело прошло путь L 7 a, а за время тело прошло путь L 8 a(7 +). Тогда путь за 8-ую секунду равен a a s L 8 L 7 a (7 +/), отсюда выражаем ускорение тела: s a м/c. Δ (7 +) Путь l тело преодолеет за время, такое что l a, тогда искомое время l a 3 с.

4 Графики движения Задача. На рисунке приведен график зависимости проекции ускорения материальной точки, движущейся вдоль оси OX, от времени. Постройте графики зависимости проекции скорости, и координаты от времени. Координата точки и её скорость в начальный момент равны нулю. Найдите среднюю скорость и среднюю величину скорости точки за все время движения. a, м /с 3 4, c Решение. Обозначим через, 3 и 4 моменты времени, соответствующие с, с, 3 с и 4 с от начала движения. В течение первой секунды движение тела равноускоренное, проекция ускорения a м/с. Скорость меняется по линейному закону: a, в конце первой секунды м/с. Координата меняется по закону a /, графиком функции () является участок параболы с вершиной, соответствующей, при, координата в конце первой секунды,5 м. На второй секунде движение тела равномерное со скоростью. На графике зависимости () такой участок изображается горизональным отрезком. Координата меняется по линейному закону: + (), в конце второй секунды + (),5 м. На третьей секунде тело движется с постоянным ускорением: a м/с, скорость падает линейно за эту секунду от до 3 м/с. Координата меняется по закону + () + a () /. Графиком функции () является участок параболы с вершиной, соответствующей,75 м при,5 с. В этот момент проекция скорости тела равна нулю тело поворачивает, касательная к графику функции () в этот момент горизонтальна. Координата в конце третьей секунды 3,5 м. На четвертой секунде движение тела равномерное со скоростью 3 м/с. Координата уменьшается по линейному закону: (3), в конце четвертой секунды (4 3),5 м. Графики зависимостей () и () изображены ниже. Перемещение тела за все время движения п 4 c равно s 4,5 м. Среднее значение проекции скорости тела () ср s / п,5 м/c., м/c, м 3 4, c 3 4, c

5 Задачи для самостоятельного решения.. Тело из состояния покоя начинает двигаться с постоянным ускорением. Найти отношение расстояний, проходимых за последовательные равные промежутки времени. Ответ: [:3:5: ].. На рисунке приведен график зависимости проекции ускорения материальной точки, движущейся вдоль оси OX, от времени. Постройте графики зависимости проекции скорости, координаты, а также пройденного точкой пути L от времени. Координата точки и её скорость в начальный момент равны нулю. Найдите среднюю скорость и среднюю величину скорости точки за все время движения. a, м/c 3 4, c


ВИДЫ ДВИЖЕНИЯ Равномерное и равнопеременное РАВНОМЕРНОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ Е Скоростью равномерного прямолинейного движения называют векторную величину, равную отношению перемещения тела к промежутку

Равнопеременное движение, ускорение тела 1. Автомобиль движется по прямой улице. На графике представлена зависимость его скорости от времени. На каком интервале времени модуль ускорения автомобиля максимален?

Генкин Б.И. Элементы содержания, проверяемые на ЕГЭ по физике. Пособие для повторения учебного материала. Санкт-Петербург: hp://audioi-um.u, 1 1.1 КИНЕМАТИКА Кинематика наука о формах движения. В кинематике

Анализ графиков 1. Задание 1 106 По графику зависимости модуля скорости тела от времени, представленного на рисунке, определите путь, пройденный телом от момента времени 0 с до момента времени 2 с. (Ответ

Модели материальной точки (МТ) и абсолютно твердого тела (АТТ). Способы описания движения МТ. Основные понятия кинематики: перемещение, путь, скорость, ускорение. Прямая и обратная задачи кинематики. Средняя

Кинематика Механическое движение. Относительность механического движения. Механическим движением это изменение положения данного тела в пространстве (или его частей) относительно других тел, происходящее

КАРТА СХЕМА ПРОРАБОТКИ ТЕМЫ КИНЕМАТИКА МАТЕРИАЛЬНОЙ ТОЧКИ Кинематическое уравнение движения I. Прямая задача: Вычисления скорости и ускорения по уравнению движения материальной точки. II. Обратная задача:

1.1.1. Механическое движение. Относительность механического движения. Система отсчета. Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Равнопеременное движение, ускорение тела 1. Автомобиль движется по прямой улице. На графике представлена зависимость скорости автомобиля от времени. Чему равен максимальный модуль ускорения? Ответ выразите

1.4. Законы равномерного и равноускоренного движений Основная задача кинематики заключается в нахождении кинематических законов движения. Рассмотрим сначала прямолинейное равномерное движение материальной

Занятие. Ускорение. Равноускоренное движение Вариант 1.1.1. Какая из нижеперечисленных ситуаций невозможна: 1. Тело в некоторый момент времени имеет скорость, направленную на север, а ускорение, направленное

Предварительные сведения из математики Скалярное произведение векторов Скалярным произведением двух векторов называется число, которое равно произведению их модулей на косинус угла между ними. a b = a

Лекция 3 Криволинейное движение. Тангенциальная и нормальная составляющие ускорения. Движение точки по окружности. Угловое перемещение, векторы угловой скорости и углового ускорения. Связь между векторами

Кинематика материальной точки. : Скорость материальной точки.... Ускорение материальной точки.... 3 Тангенциальное и нормальное ускорение.... 4 Проекции скорости и ускорения... 5 График скорости... 6 Вращательное

Анализ графиков 1. По графику зависимости модуля скорости тела от времени, представленного на рисунке, определите путь, пройденный телом от момента времени 0 с до момента времени 2 с. (Ответ дайте в метрах.)

КИНЕМТИК задания типа В Стр. 1 из 5 1. Тело начало движение вдоль оси OX из точки x = 0 с начальной скоростью v0х = 10 м/с и с постоянным ускорением a х = 1 м/c 2. Как будут меняться физические величины,

Тема 2. Неравномерное движение 1. Средняя и мгновенная скорость Средняя скорость - это такая скорость, с которой тело могло бы двигаться, если бы двигалось равномерно. В действительности скорость тела

Тесты по теоретической механике 1: Какое или какие из нижеприведенных утверждений не справедливы? I. Система отсчета включает в себя тело отсчета и связанную с ним систему координат и выбранный способ

1 Задачи механики. Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и полное ускорения. Структура механики Механика Механика Кинематика

Вопросы экзаменационного теста по теме «Механика» для технических групп. 1. Укажите основной признак механического движения, как физического явления. Изменение положения тела со временем. Изменение положения

Физика. 11 класс. Тренинг «Кинематика» 1 Кинематика Задания для тренировки 1 Тело движется прямолинейно. На графике приведена зависимость проекции скорости движения тела от времени. Чему равна средняя

1 Механическое движение. Скорость. Ускорение. Движение по окружности. Механические колебания и волны Вариант 1 1 Тело движется вдоль оси OX. В таблице представлены значения проекции скорости v x этого

Лекция 1. Скорость и ускорение произвольно движущейся точки. Анализ некоторых видов движения 1. Скорость и ускорение произвольно движущейся точки Скорость характеризует быстроту движения Средняяскорость

Кинематика Криволинейное движение. Равномерное движение по окружности. Простейшей моделью криволинейного движения является равномерное движение по окружности. В этом случае точка движется по окружности

ТЕМА Лекция 1 Движение с постоянной скоростью. Относительность движения. Ускорение. Равноускоренное движение. Матрончик Алексей Юрьевич кандидат физико-математических наук, доцент кафедры общей физики

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР) Кафедра

Перемещение как площадь под графиком. Перемещение в равноускоренном движении Определенный интеграл. Графический смысл перемещения. Если тело движется прямолинейно и равномерно, то для определения перемещения

Кинематика 1 1 Точка движется по окружности радиусом 2 м, и ее перемещение равно по модулю диаметру. Путь, пройденный телом, равен 1) 2 м 2) 4 м) 6,28 м 4) 12,56 м 2 Камень брошен из окна второго этажа

И В Яковлев Материалы по физике MathUsru Равноускоренное движение Темы кодификатора ЕГЭ: виды механического движения, скорость, ускорение, уравнения прямолинейного равноускоренного движения, свободное

Кинематика графики, уравнения, таблицы Стр. 1 из 6 ГРАФИКИ Определение вида движения по графику 1. Равноускоренному движению соответствует график зависимости модуля ускорения от времени, обозначенный на

1.1. Кинематика материальной точки Основные законы и формулы При движении материальной точки в пространстве радиус-вектор, проведённый из начала координат к точке, и координаты этой точки, представляющие

Вариант 1008104 1. Координата материальной точки изменяется с течением времени по закону Какой из приведённых ниже графиков соответствует этой зависимости? 2. При равноускоренном движении автомобиля на

5. Прямолинейное равноускоренное движение Прямолинейное равноускоренное движение это движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, т. е. это движение с постоянным

Механика Механическим движением называется изменение положения тела по отношению к другим телам Как видно из определения механическое движение относительно Для описания движения необходимо определить систему

Кинематика. Кинематика часть теоретической механики, в которой изучаются движения материальных тел без учета их масс и действующих на них сил Основные физические величины и понятия. 1) Траектория - линия

Вопросы для подготовки к контрольной по КИНЕМАТИКЕ 1) Камень из состояния покоя начинает свободно падать с вершины очень высокой горы. Приблизительно, какой путь пройдѐт камень за первые 7 с падения? a)

Лекция 2 Тема лекции: Механическое движение и его виды. Относительность механического движения. Прямолинейное равномерное и равноускоренное движение. План лекции: 1. Предмет механики 2. Механическое движение

Основные понятия кинематики (Лекция 1 в 2015-2016 учебном году) Материальная точка. Система отсчета. Перемещение. Длина пути Кинематика это часть механики, которая изучает движения тел без исследования

1 Виды движения твердого тела. Вращение твердого тела вокруг неподвижной оси. 3 Угловые кинематические величины. 4 Связь угловых и линейных кинематических величин. Равномерное движение по окружности это

8 класс Задача Найти минимальную скорость υ, с которой нужно бросить тело, чтобы оно пролетело над стенкой высоты h, а также скорость пролета тела над стенкой υ r к Расстояние от стенки до места броска

00-0 уч. год., кл. Физика. Основные законы механики.. Динамика В динамике механическое движение изучается в связи с причинами, вызывающими тот или иной его характер. В инерциальных системах отсчёта этими

Основные понятия кинематики (Лекция в 05-06 учебном году) Материальная точка. Система отсчета. Перемещение. Длина пути Кинематика это часть механики, которая изучает движения тел без исследования причин,

Министерство образования и науки Украины ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ АВТОМОБИЛЬНО- ДОРОЖНЫЙ УНИВЕРСИТЕТ СБОРНИК ТЕСТОВЫХ ЗАДАНИЙ ПО ФИЗИКЕ Для студентов подготовительного факультета ХНАДУ Харьков ХНАДУ 2016

3 Вращательное движение твёрдого тела вокруг неподвижной оси Твёрдые тела это объёкты размеры и форма которых в процессе движения не изменяются В отличие от материальной точки твёрдые тела имеют геометрические

Примеры решения задач (части и 3 заданий ЕГЭ) Задача.. Товарный поезд идет со скоростью =36 км/ч. Спустя время = 3 мин с той же станции по тому же направлению вышел экспресс со скоростью =7 км/ч. Через

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Теоретическая механика наука об общих законах движения и равновесия материальных тел и о возникающих при этом механических взаимодействиях между телами Движение (механическое движение)

Лекция Механическое движение, его относительность. Кинематика. Декартова система координат. Радиус-вектор, его проекции. Материальная точка. Поступательное движение тела. Закон движения. Системы отсчета.

Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа ФИЗИКА Кинематика Задание для 9-х классов (6

Лекция КИНЕМАТИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ АБСОЛЮТНО ТВЕРДОГО ТЕЛА Термины и понятия Абсолютно твердое тело Аксиальный вектор Вращательное движение Деформация Замедленное вращение Кинематические характеристики

1 Кинематика Ответами к заданиям являются слово, словосочетание, число или последовательность слов, чисел. Запишите ответ без пробелов, запятых и других дополнительных символов. Зависимость координаты

ИЗУЧЕНИЕ ЗАКОНОМЕРНОСТЕЙ ДВИЖЕНИЯ ТЕЛА В ПОЛЕ СИЛЫ ТЯЖЕСТИ Цель работы - путем численного моделирования изучить основные закономерности движения тела вблизи поверхности Земли. Кинематическим законом движения

Решение домашнего задания 4 Движение в трехмерном пространстве 4.. Самолет летит со скоростью V = 500 км/ч на высоте H = км точно в направлении неподвижной льдины, на которой находится терпящий бедствие

Банк заданий 7 класс профильный уровень. КИНЕМАТИКА.1 Материальная точка. Система отсчёта. К каждому из заданий даны 4 варианта ответа, из которых только один правильный. 1. Механическим движением называется

Задания на балл..0. В какой из двух задач можно рассматривать Землю как материальную точку?) Рассчитать период обращения Земли вокруг Солнца.) Рассчитать скорость движения точек поверхности Земли при

ТЕСТЫ ДЛЯ ЗАЩИТЫ ЛАБОРАТОРНОЙ РАБОТЫ «КИНЕМАТИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ». ВАРИАНТ 1 1. Колесо вращается так, как показано на рисунке белой стрелкой. К ободу колеса приложена сила, направленная по касательной.

Лекция Кинематика материальной точки Система отсчета Радиус-вектор, векторы перемещения, скорости, ускорения Траектория движения и пройденный путь Перемещение и путь при равномерном и равнопеременном прямолинейном

Занятие 1. Введение в кинематику. Равномерное прямолинейное движение Часть 1. Теория и примеры решения задач Материальная точка. Тело отсчета. Декартова система координат Кинематика это часть механики,

Кинематика поступательного движения Лекция 1.1. План лекции 1.Предмет физики как основы естественнонаучных знаний. Единицы измерения физических величин. Механика. Кинематика. Динамика. 2.Движение, способы

Серия «Библиотека школьника» Э.Н. Гришина И.Н. Веклюк ФИЗИКА Формулы, понятия, определения Издание третье Ростов-на-Дону «Феникс» 14 УДК 373.167.1:53 ББК.3я7 КТК 444 Г85 Гришина Э.Н. Г85 Физика. Формулы,

ПРОБНЫЙ ЭКЗАМЕН по теме. КИНЕМАТИКА Внимание: сначала попытайтесь ответить на вопросы и решить задачи самостоятельно, а потом проверьте свои ответы. Указание: ускорение свободного падения принимать равным

Лекция 2 Относительность движения. Формулы сложение скоростей и ускорений. Естественный способ описания движения частицы. Сопровождающая система координат. Физический смысл тангенциальной компоненты ускорения.

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ПЕЧАТАЕТСЯ Институт физики по решению учебно-методической комиссии Института физики Казанского (Приволжского) федерального университета Кафедра общей физики

3 ПРЕДИСЛОВИЕ Пособие предназначено для студентов Белгородского государственного технологического университета им. В.Г. Шухова (БГТУ) всех специальностей заочной формы обучения с применением дистанционных

ЦДО «Уникум» РУДН ОЛИМПИАДА ПО ФИЗИКЕ Задание 1. Дальность полета снаряда, летящего по навесной траектории, равна максимальной высоте подъема. Какова максимальная высота настильной траектории при той же

Сегодня: суббота, 11 февраля 2017 г. Толмачева Нелла Дмитриевна доцент кафедры общей физики Кинематика - изучает движение тел, не рассматривая причин, которые это движение вызывают. Она использует понятия:

Министерство общего и профессионального образования Российской Федерации ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра физики Т.М. Чмерева М.Р. Ишмеев МЕТОДИЧЕСКИЕ УКАЗАНИЯ к лабораторной работе 104

3.Контрольные задания 1 (А) Материальная точка это: 1) тело пренебрежимо малой массы; 2) тело очень малых размеров; 3) точка, показывающая положение тела в пространстве; 4) тело, размерами которого в условиях



Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

V cp = s / t – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

Проекция вектора скорости на ось ОХ:

V x = x’ это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

– это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

= " = " Учитывая, что 0 – скорость тела в начальный момент времени (начальная скорость), – скорость тела в данный момент времени (конечная скорость), t – промежуток времени, в течение которого произошло изменение скорости, будет следующей:

Отсюда формула скорости равнопеременного движения в любой момент времени:

= 0 + t Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой: v x = v 0x ± a x t Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v 0 bc = v Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x

1. Равномерное движение встречается нечасто. Обычно механическое движение - это движение с изменяющейся скоростью. Движение, при котором скорость тела с течением времени изменяется, называют неравномерным .

Например, неравномерно движется транспорт. Автобус, начиная движение, увеличивает свою скорость; при торможении его скорость уменьшается. Падающие на поверхность Земли тела также движутся неравномерно: их скорость с течением времени возрастает.

При неравномерном движении координату тела уже нельзя определить по формуле x = x 0 + v x t , так как скорость движения не является постоянной. Возникает вопрос, какая же величина характеризует быстроту изменения положения тела с течением времени при неравномерном движении? Такой величиной является средняя скорость .

Средней скоростью v ср неравномерного движения называют физическую величину, равную отношению перемещения s тела ко времени t , за которое оно совершено:

v ср = .

Средняя скорость является векторной величиной . Для определения модуля средней скорости в практических целях этой формулой можно воспользоваться лишь в том случае, когда тело движется вдоль прямой в одну сторону. Во всех остальных случаях эта формула непригодна.

Рассмотрим пример. Необходимо рассчитать время прибытия электрички на каждую станцию по пути следования. При этомее движение не является прямолинейным. Если расчитывать модуль средней скорости на участке между двумя станциями, пользуясь приведенной формулой, то полученное значение будет отличаться от значения средней скорости, с которым двигалась электричка, поскольку модуль вектора перемещения меньше пройденного электричкой пути. А средняя скорость движения этой электрички из начального пункта до конечного пункта и обратно в соответствии с приведенной формулой и вовсе равна нулю.

На практике при определении средней скорости пользуются величиной, равной отношению пути l ко времени t , за которое этот путь пройден:

v ср = .

Ее часто называют средней путевой скоростью .

2. Зная среднюю скорость тела на каком‑либо участке траектории, нельзя определить его положение в любой момент времени. Предположим, что автомобиль проехал путь 300 км за 6 ч. Средняя скорость движения автомобиля равна 50 км/ч. Однако при этом он мог какое‑то время стоять, какое‑то время двигаться со скоростью 70 км/ч, какое‑то время - со скоростью20 км/ч и т. п.

Очевидно, что, зная среднюю скорость движения автомобиля за 6 ч, мы не можем определить его положение через 1 ч, через 2 ч, через 3 ч и т. п.

3. При движении тело проходит последовательно все точки траектории. В каждой точке оно находится в определенные моменты времени и имеет какую‑то скорость.

Мгновенной скоростью называют скорость тела в данный момент времени или в данной точке траектории.

Предположим, что тело совершает неравномерное прямолинейное движение. Определим скорость движения этого тела в точке O его траектории (рис. 21). Выделим на траектории участок AB , внутри которого находится точка O . Перемещение s 1 на этом участкетело совершило за время t 1 . Средняя скорость движения на этом участке - v ср 1 = .

Уменьшим перемещение тела. Пусть оно равно s 2 , а время движения - t 2 . Тогда средняя скорость тела за это время: v ср 2 = .Еще уменьшим перемещение, средняя скорость на этом участке: v ср 3 = .

Будем и дальше уменьшать время движения тела и соответственно его перемещение. В конце концов перемещение и время станут такими маленькими, что прибор, например спидометр в машине, перестанет фиксировать изменение скорости и движение за этот малый промежуток времени можно будет считать равномерным. Средняя скорость на этом участке и есть мгновенная скорость тела в точке O .

Таким образом,

мгновенная скорость - векторная физическая величина, равная отношению малого перемещения D s к малому промежутку времени Dt , за которое это перемещение совершено:

v = .

Вопросы для самопроверки

1. Какое движение называют неравномерным?

2. Что называют средней скоростью?

3. Что показывает средняя путевая скорость?

4. Можно ли, зная траекторию движения тела и его среднюю скорость за определенный промежуток времени, определить положение тела в любой момент времени?

5. Что называют мгновенной скоростью?

6. Как вы понимаете выражения «малое перемещение» и «малый промежуток времени»?

Задание 4

1. Автомобиль проехал по московским улицам 20 км за 0,5 ч, при выезде из Москвы он стоял в течение 15 мин, а за следующие1 ч 15 мин проехал по Подмосковью 100 км. С какой средней скоростью двигался автомобиль на каждом участке и на всем пути?

2. Чему равна средняя скорость движения поезда на перегоне между двумя станциями, если первую половину расстояния между станциями он проешел со средней скоростью 50 км/ч, а вторую - со средней скоростью 70 км/ч?

3. Чему равна средняя скорость движения поезда на перегоне между двумя станциями, если половину времени он прошел со средней скоростью 50 км/ч, а оставшееся время - со средней скоростью 70 км/ч?



error: