Составить уравнение эллипса онлайн калькулятор. Линии второго порядка

Каноническое уравнение эллипса имеет вид

где a – большая полуось; b – малая полуось. Точки F1(c,0) и F2(-c,0) − c называются

a, b - полуоси эллипса.

Нахождение фокусов, эксцентриситета, директрис эллипса, если известно его каноническое уравнение.

Определение гиперболы. Фокусы гиперболы.

Определение. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами.

По определению |r1 – r2|= 2a. F1, F2 – фокусы гиперболы. F1F2 = 2c.

Каноническое уравнение гиперболы. Полуоси гиперболы. Построение гиперболы, если известно ее каноническое уравнение.

Каноническое уравнение:

Большая полуось гиперболы составляет половину минимального расстояния между двумя ветвями гиперболы, на положительной и отрицательной сторонах оси (слева и справа относительно начала координат). Для ветви расположенной на положительной стороне, полуось будет равна:

Если выразить её через коническое сечение и эксцентриситет, тогда выражение примет вид:

Нахождение фокусов, эксцентриситета, директрис гиперболы, если известно ее каноническое уравнение.

Эксцентриситет гиперболы

Определение. Отношение называется эксцентриситетом гиперболы, где с –

половина расстояния между фокусами, а – действительная полуось.

С учетом того, что с2 – а2 = b2:

Если а = b, e = , то гипербола называется равнобочной (равносторонней).

Директрисы гиперболы

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/e от него, называются директрисами гиперболы. Их уравнения: .

Теорема. Если r – расстояние от произвольной точки М гиперболы до какого- либо фокуса, d – расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r/d – величина постоянная, равная эксцентриситету.

Определение параболы. Фокус и директриса параболы.

Парабола. Параболой называется геометрическое место точек, каждая из которых одинаково удалена от заданной фиксированной точки и от заданной фиксированной прямой. Точка, о которой идет речь в определении, называется фокусом параболы, а прямая - ее директрисой.

Каноническое уравнение параболы. Параметр параболы. Построение параболы.

Каноническое уравнение параболы в прямоугольной системе координат: (или , если поменять местами оси).

Построение параболы при заданной величине параметра p выполняется в следующей последовательности:

Проводят ось симметрии параболы и откладывают на ней отрезок KF=p;

Через точку K перпендикулярно оси симметрии проводят директрису DD1;

Отрезок KF делят пополам получают вершину 0 параболы;

От вершины отмеряют ряд произвольных точек 1, 2, 3, 5, 6 с постепенно увеличивающемся расстоянием между ними;

Через эти точки проводят вспомогательные прямые перпендикулярные оси параболы;

На вспомогательных прямых делают засечки радиусом равным расстоянию от прямой до директрисы;

Полученные точки соединяют плавной кривой.

Эллипс

Эллипс. Фокусы. Уравнение эллипса. Фокусное расстояние.

Большая и малая оси эллипса. Эксцентриситет. Уравнение

касательной к эллипсу. Условие касания прямой и эллипса.

Эллипсом (рис.1 ) называется геометрическое место точек, сумма расстояний от которых до двух заданных точек F 1 и F 2 , называемых фокусами эллипса, есть величина постоянная.

Уравнение эллипса (рис .1 ) :

Здесь начало координат является центром симметрии эллипса, а оси координат – его осями симметрии. При a > b фокусы эллипса лежат на оси ОХ (рис.1) , при a < b фокусы эллипса лежат на оси О Y , а при a = b эллипс становится окружностью (фокусы эллипса в этом случае совпадают с центром окружности ). Таким образом, окружность есть частный случай эллипса .

Отрезок F 1 F 2 = 2 с , где , называется фокусным расстоянием . Отрезок AB = 2 a называется большой осью эллипса , а отрезок CD = 2 b малой осью эллипса . Число e = c / a , e < 1 называется эксцентриситетом эллипса .

Пусть Р (х 1 , у 1 ) – точка эллипса, тогда уравнение касательной к эллипсу в

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F - числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b ) - длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a , О ) и (- a , О ), а ось ординат - в точках (b , О ) и (- b , О ). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность - частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a /b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия - эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось - это a = 5 , меньшая полуось - это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами .

называется эксцентриситетом эллипса.

Отношение b /a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

Если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

Если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат - каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c , нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c , определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если - произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и - расстояния до этой точки от фокусов , то формулы для расстояний - следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a .

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже - красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и - расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Это геометрическая фигура, которая ограничена кривой, заданной уравнением .

Он имеет два фокуса. Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.

Чертеж фигуры эллипс

F 1 , F 2 – фокусы. F 1 = (c ; 0); F 2 (- c ; 0)

с – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

Теорема. Фокусное расстояние и полуоси связаны соотношением:

a 2 = b 2 + c 2 .

Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r 1 + r 2 = 2*(по теореме Пифагора). В случае, если точка М находится на пересечении его с горизонтальной осью, r 1 + r 2 = a – c + a + c. Т.к. по определению сумма r 1 + r 2 – постоянная величина, то, приравнивая, получаем:

r 1 + r 2 = 2 a .

Эксцентриситет фигуры эллипс

Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом .

Т.к. с < a , то е < 1.

Определение. Величина k = b / a называется коэффициентом сжатия , а величина 1 – k = (a – b)/ a называется сжатием .

Коэффициент сжатия и эксцентриситет связаны соотношением: k 2 = 1 – e 2 .

Если a = b (c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность.

Если для точки М(х 1 , у 1) выполняется условие: , то она находится внутри эллипса, а если , то точка находится вне его.

Теорема. Для произвольной точки М(х, у), принадлежащей фигуре эллипс верны соотношения :

r 1 = a – ex , r 2 = a + ex .

Доказательство. Выше было показано, что r 1 + r 2 = 2 a . Кроме того, из геометрических соображений можно записать:

После возведения в квадрат и приведения подобных слагаемых:

Аналогично доказывается, что r 2 = a + ex . Теорема доказана.

Директрисы фигуры эллипс

С фигурой эллипс связаны две прямые, называемые директрисами . Их уравнения:

x = a / e ; x = - a / e .

Теорема. Для того, чтобы точка лежала на границе фигуры эллипс, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.

Пример. Составить , проходящей через левый фокус и нижнюю вершину фигуры эллипс, заданного уравнением:

    Окружностью называется замкнутая плоская кривая, все точки которой равноудалены от заданной точки (центра окружности). Расстояние от любой точки окружности \(P\left({x,y} \right)\) до ее центра называется радиусом . Центр окружности и сама окружность лежат в одной и той же плоскости. Уравнение окружности радиуса \(R\) с центром в начале координат (каноническое уравнение окружности ) имеет вид
    \({x^2} + {y^2} = {R^2}\).

    Уравнение окружности радиуса \(R\) с центром в произвольной точке \(A\left({a,b} \right)\) записывается как
    \({\left({x - a} \right)^2} + {\left({y - b} \right)^2} = {R^2}\).

    Уравнение окружности, проходящей через три точки , записывается в виде: \(\left| {\begin{array}{*{20}{c}} {{x^2} + {y^2}} & x & y & 1\\ {x_1^2 + y_1^2} & {{x_1}} & {{y_1}} & 1\\ {x_2^2 + y_2^2} & {{x_2}} & {{y_2}} & 1\\ {x_3^2 + y_3^2} & {{x_3}} & {{y_3}} & 1 \end{array}} \right| = 0.\\\)
    Здесь \(A\left({{x_1},{y_1}} \right)\), \(B\left({{x_2},{y_2}} \right)\), \(C\left({{x_3},{y_3}} \right)\) − три точки, лежащие на окружности.

    Уравнение окружности в параметрической форме
    \(\left\{ \begin{aligned} x &= R \cos t \\ y &= R\sin t \end{aligned} \right., \;\;0 \le t \le 2\pi\),
    где \(x\), \(y\) − координаты точек окружности, \(R\) − радиус окружности, \(t\) − параметр.

    Общее уравнение окружности
    \(A{x^2} + A{y^2} + Dx + Ey + F = 0\)
    при условии \(A \ne 0\), \(D^2 + E^2 > 4AF\).
    Центр окружности расположен в точке с координатами \(\left({a,b} \right)\), где
    \(a = - \large\frac{D}{{2A}}\normalsize,\;\;b = - \large\frac{E}{{2A}}\normalsize.\)
    Радиус окружности равен
    \(R = \sqrt {\large\frac{{{D^2} + {E^2} - 4AF}}{{2\left| A \right|}}\normalsize} \)

    Эллипсом называется плоская кривая, для каждой точки которой сумма расстояний до двух заданных точек (фокусов эллипса ) постоянна. Расстояние между фокусами называется фокусным расстоянием и обозначается через \(2c\). Середина отрезка, соединяющего фокусы, называется центром эллипса . У эллипса есть две оси симметрии: первая или фокальная ось, проходящая через фокусы, и перпендикулярная ей вторая ось. Точки пересечения этих осей с эллипсом называются вершинами . Отрезок, соединяющий центр эллипса с вершиной, называется полуосью эллипса . Большая полуось обозначается через \(a\), малая полуось − через \(b\). Эллипс, центр которого находится в начале координат, а полуоси лежат на координатных прямых, описывается следующим каноническим уравнением :
    \(\large\frac{{{x^2}}}{{{a^2}}}\normalsize + \large\frac{{{y^2}}}{{{b^2}}}\normalsize = 1.\)

    Сумма расстояний от любой точки эллипса до его фокусов постоянна:
    \({r_1} + {r_2} = 2a\),
    где \({r_1}\), \({r_2}\) − расстояния от произвольной точки \(P\left({x,y} \right)\) до фокусов \({F_1}\) и \({F_2}\), \(a\) − большая полуось эллипса.

    Соотношение между полуосями эллипса и фокусным расстоянием
    \({a^2} = {b^2} + {c^2}\),
    где \(a\) − большая полуось эллипса, \(b\) − малая полуось, \(c\) − половина фокусного расстояния.

    Эксцентриситет эллипса
    \(e = \large\frac{c}{a}\normalsize

    Уравнения директрис эллипса
    Директрисой эллипса называется прямая, перпендикулярная его фокальной оси и пересекающая ее на расстоянии \(\large\frac{a}{e}\normalsize\) от центра. Эллипс имеет две директрисы, отстоящие по разные стороны от центра. Уравнения директрис записываются в виде
    \(x = \pm \large\frac{a}{e}\normalsize = \pm \large\frac{{{a^2}}}{c}\normalsize.\)

    Уравнение эллипса в параметрической форме
    \(\left\{ \begin{aligned} x &= a\cos t \\ y &= b\sin t \end{aligned} \right., \;\;0 \le t \le 2\pi\),
    где \(a\), \(b\) − полуоси эллипса, \(t\) − параметр.

    Общее уравнение эллипса
    \(A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\),
    где \({B^2} - 4AC

    Общее уравнение эллипса, полуоси которого параллельны осям координат
    \(A{x^2} + C{y^2} + Dx + Ey + F = 0\),
    где \(AC > 0\).

    Периметр эллипса
    \(L = 4aE\left(e \right)\),
    где \(a\) − большая полуось эллипса, \(e\) − эксцентриситет, \(E\) − полный эллиптический интеграл второго рода.

    Приближенные формулы для периметра эллипса
    \(L \approx \pi \left[ {\large\frac{3}{2}\normalsize\left({a + b} \right) - \sqrt {ab} } \right],\;\;L \approx \pi \sqrt {2\left({{a^2} + {b^2}} \right)},\)
    где \(a\), \(b\) − полуоси эллипса.

    Площадь эллипса
    \(S = \pi ab\)



error: