Отношение термодинамической температуры к практической. Термодинамическая температурная шкала

Возьмем закрытый сосуд с газом, и будем нагревать его, первоначально поместив в тающий лед. Температуру газа t определим с помощью термометра, а давление p манометром. С увеличением температуры газа его давление будет возрастать. Такую зависимость нашел французский физик Шарль. График зависимости p от t, построенный на основании такого опыта, имеет вид прямой линии.

Если продолжить график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа. Невозможно на опыте получить путем охлаждения газ в состоянии с нулевым давлением, так как при очень низких температурах все газы переходят в жидкие или твердые состояния. Давление идеального газа определяется ударами хаотически движущихся молекул о стенки сосуда. Значит, уменьшение давления при охлаждении газа объясняется уменьшением средней энергии поступательного движения молекул газа Е; давление газа будет равно нулю, когда станет равна нулю энергия поступательного движения молекул.

Английский физик У. Кельвин (Томсон) выдвинул идею о том, что полученное значение абсолютного нуля соответствует прекращению поступательного движения молекул всех веществ. Температуры ниже абсолютного нуля в природе быть не может. Это предельная температура при которой давление идеального газа равно нулю.

Температуру, при которой должно прекратиться поступательное движение молекул, называют абсолютным нулем (илинулем Кельвина).

Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы – термодинамической шкалы температур (шкала Кельвина ). За начало отсчета по этой шкале принята температура абсолютного нуля.

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К.

Размер градуса кельвина определяют так, чтобы он совпадал с градусом Цельсия, т.е 1К соответствует 1ºС.

Температура, отсчитанная по термодинамической шкале температур, обозначается Т. Её называют абсолютной температурой или термодинамической температурой .

Температурная шкала Кельвина называется абсолютной шкалой температур . Она оказывается наиболее удобной при построении физических теорий.

Кроме точки нулевого давления газа, которая называется абсолютным нулем температуры , достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды (0,01 °С), в которой в тепловом равновесии находятся все три фазы – лед, вода и пар. По шкале Кельвина температура тройной точки принимается равной 273,16 К.



Связь между абсолютной температурой и температурой по шкале Цельсия выражается формулой Т = 273,16 + t , где t – температура в градусах Цельсия.

Чаще пользуются приближенной формулой Т = 273 + t и t = Т – 273

Абсолютная температура не может быть отрицательной.

2. Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн.

1. Переменное магнитное поле создает вихревое электрическое поле.

2. Переменное электрическое поле создает вихревое магнитное поле.

Электромагнитное поле

Это особая форма материи - совокупность электрических и магнитных полей.

Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное ноле.

Термодинами́ческая Температу́рная шкала́ (Кельвина шкала), абсолютная шкала температур, не зависящая от свойств термометрического вещества (начало отсчета - абсолютный нуль температуры). Построение термодинамической температурной шкалы основано на втором начале термодинамики и, в частности, на независимости кпд Карно цикла от природы рабочего тела. Единица термодинамической температуры - кельвин (К)

Статистический вес и энтропия.

Энтропия - в естественных науках мера неупорядоченности системы, состоящей из многих элементов. В частности, в статистической физике - мера вероятности осуществления какого-либо макроскопического состояния.

Где - приращение энтропии; - минимальная теплота, подведённая системе; - абсолютная температура процесса.

Статистический вес в термодинамике и статистической физике - число способов, которыми может быть реализовано данное макроскопическое состояние системы. Статистический вес связан с энтропией S системы соотношением Больцмана ,

Где k = R/N = 1,38*10 -23 Дж/К

где k - фундаментальная мировая постоянная Больцмана;
R = 8,31 Дж/(моль*К) - молярная газовая постоянная;
N = 6,06*10 23 моль -1 - число Авогадро;
Р - статистический вес: число способов осуществления данного состояния.

Параметр S - энтропия - служит мерой рассеяния энергии Вселенной, а Р - характеризует любые самопроизвольные изменения, эта величина относится к миру атомов, определяющих скрытый механизм изменения.

Билет

Равновесное состояние. Диаграммы состояний. Уравнение состояния. Уравнение состояния разреженных газов. Идеальный газ. Уравнение состояния не разреженных газов (уравнение Ван-дер-Ваальса)

Равновесное состояние - состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз. Отличают тепловое, механическое, радиационное (лучистое) и химическое равновесия.



1)равновесие достигается в какой-либо части (или частях) относительно большой по размерам системы - локальное равновесие,

2)неполное равновесие достигается вследствие разности скоростей релаксационных процессов, протекающих в системе - частичное равновесие,

3)имеют место как локальное, так и частичное равновесие.

В неравновесных системах происходят изменения потоков материи или энергии, или, например, фаз.

Диаграммы состояний.

диаграмма равновесия, фазовая диаграмма, графическое изображение равновесных фазовых состояний одно- или многокомпонентных систем при разных значениях параметров, определяющих эти состояния. Диаграммы состояния изображают фазовый состав системы при разных концентрациях компонентов (Х), температурах (Т) и давлении (Р).

Диаграммы являются пространственными. Мерность пространства зависит от числа независимых переменных, функцией которых является фазовый состав. Диаграмма состояния может быть двумерной, трехмерной и многомерной. Переменные (Р, Т, Х) являются координатами, в которых строится диаграмма. Каждая точка диаграммы состояния (фигуративная точка) указывает на фазовый состав вещества при заданных значениях термодинамических параметров (координат этой точки). Когда система состоит только из одного компонента, диаграмма состояния представляет собой трехмерную пространственную фигуру, построенную в трех прямоугольных координатных осях, по которым откладывают температуру (Т), давление (Р) и мольный объем (v). На практике часто применяют проекцию диаграммы состояния на одну из координатных плоскостей, обычно на плоскость Р - Т.

Разреженные газы.

Разреженным в физике называют такое состояние газа, при котором средняя длина свободного пробега молекул превышает линейные размеры сосуда, содержащего газ. Это состояние называют также вакуумом. Поведение разреженных газов отличается целым рядом особенностей. Поскольку в вакууме молекулы газа пробегают расстояние от одной стенки до другой без столкновений, то не существует давления одной части газа на другую; можно говорить лишь о давлении газа на стенки сосуда. В разреженных газах не существует внутреннего трения и явления теплопроводности в обычном смысле. Физический вакуум при комнатных температурах реализуется в газах при давлении менее 10 -5 мм рт. ст., если газ находится в объеме с линейными размерами порядка метра.
В технике под вакуумом понимают состояние газа при давлении ниже атмосферного. Степень технического вакуума оценивается величиной давления остаточного газа.

Идеальный газ.

Идеальный газ - математическая модель газа, в которой предполагается, что:

1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией;

2) суммарный объём молекул газа пренебрежимо мал;

3) между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги;

4) время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц.

Уравнение состояния идеального газа(уравнение Клайперона)

Уравнение состояния не разреженных газов (уравнение Ван-дер-Ваальса ) ,

Билет.

Механическая форма передачи энергии телу. Работа. Тепловая форма передачи энергии телу. Теплота. Первое начало термодинамики. Равновесно совершемая работа, равновесно подводимая теплота

Температура

Температура является количественной мерой «нагретости» тела. Более нагретым является то, «нагретость» которого уменьшается при длительном контакте с другим телом, принимаемым в этом случае, по определению, за менее нагретое. Степень «нагретости» тела измеряется по характеристикам материальных тел, зависящих от «нагретости». Измерение «нагретости» сводится к измерению некоторой величины тела, которая изменяется с изменением «нагретости» тела. Тело, выбираемое для измерения «нагретости», называется термометрическим, а величина, посредством которой измеряется «нагретость», называется термометрической величиной. Наиболее широко известными являются «нагретость», при которой кипит вода при атмосферном давлении, и «нагретость», при которой она замерзает. Эти реперные точки называются точкой кипения воды и точкой замерзания. Температурой называется числовое значение величины, с помощью которой характеризуется «нагретость» тела. Температура выражается в градусах. Пусть точке кипения присваивается температура t2, а точке замерзания - температура t1, тогда градусом температуры называется величина

где l2 и l1 - термометрические величины термометрического тела в точках кипения и замерзания воды, соответственно.

Эмпирические шкалы температур

Температурой термометрического тела называется число, которое определяется по формуле

где lt - термометрическая величина при измеряемой «нагретости». Наиболее известными эмпирическими шкалами температур являются Цельсия и Фаренгейта, которые отличаются значениями температур, приписанных реперным точкам. В шкале Цельсия t2=100 и t1=0, а в шкале Фаренгейта t2=212 и t1=32. Следовательно, одна и та же «нагретость» характеризуется в этих шкалах разными температурами:

Виды термометров Значение температуры для одной и той же шкалы температур зависит от термометрического тела. Поэтому, термометры, использующие различные термометрические тела, показывают различную температуру. Совпадение показаний термометров может быть только в реперных точках, если они одинаковы для данных термометров. Термометры бывают различными: газовыми, жидкостными, твердотельными. Во всех них используется то, что термометрическое тело (газ, жидкость, твердое тело) меняют свои физические характеристики (объем, длину, проводимость, и проч.) в зависимости от температуры.

Международная практическая шкала Международная практическая шкала температур образована таким образом, чтобы с ее помощью можно было просто калибровать научные и технические приборы и в то же время воспроизводить с технически максимально возможной точностью термодинамическую шкалу температур. Единицами температуры являются кельвин и градус Цельсия в зависимости от начала отсчета температур. Шкала температур постоянно уточняется в соответствии с результатами научных исследований и достижениями измерительной техники. Между реперными точками температурная шкала устанавливается с помощью интерполяционных формул, по которым температура вычисляется по показаниям термометров, принятых за стандартные. Международная практическая шкала температур чрезвычайно точно согласуется с термодинамической шкалой температур в реперных точках и достаточно точно во всех остальных точках.

Термодинамическая шкала

На основании 2-й теоремы Карно можно установить абсолютную термодинамическую шкалу температур, не зависящую от термометрического тела. Рассмотрим систему изотерм и адиабат. Фигуры 1, 2, 3, заключенные между двумя соседними изотермами и двумя адиабатами, являются циклами Карно.

Из выражения для КПД цикла Карно можно записать последовательность соотношений

Т.е. если задать какую-нибудь реперную точку (например, температуру тройной точки воды 273,16 К), то проведя последовательность прямых обратимых циклов Карно можно вычислить произвольную температуру (в произвольном процессе), если измерить соответствующее величины Q. Такое определение температуры не зависит от термометрического тела. Оно впервые было дано Кельвином. В честь которого была названа единица абсолютной термодинамической температуры.

Отрицательные абсолютные температуры Понятно, что отрицательная абсолютная термодинамическая температура не имеет физического смысла. Тем не менее, в квантовых системах понятие отрицательной абсолютной температуры имеет вполне определенный смысл: это мера способа заполнения квантовых уровней энергии частицами. Если частицы заполняют сначала нижние энергетические уровни, так, что на более высоком уровне частиц меньше, то температура положительна и совпадает по значению с термодинамической. Если же создается инверсность населенностей, т.е. на более низко расположенном уровне частиц меньше, чем на более высоком, то температуре приписываются отрицательные значения. Тем не менее, такие значения все же не имеют физического смысла.

Теорема Нернста – третье начало термодинамики

Температура относится к интенсивным термодинамическим параметрам состояния тел. Определение ее осуществляется через экстенсивные свойства тел, например через изменение объема жидкости в бытовом термометре. Для таких термометров могут быть приняты различные равномерные температурные шкалы, в которых могут быть приняты одинаковыми значения температур только в двух опорных точках. При всех других значениях температур различные термометры будут давать различные показания.

Например, возьмем два жидкостных термометра с различными свойствами жидкостей в них (рис.8.12). В цилиндрических столбиках этих термометров можно добиться одинакового уровня при температуре t 0 путем их наполнения при данной температуре, при этом можно подобрать диаметры цилиндров таким образом, чтобы при температуре t 1 их уровни тоже были одинаковыми. Однако в этих цилиндрах при температурах, отличных от t 0 и t 1 , уровни жидкостей совпадать не будут, из-за различных изменений объемов жидкостей с различными термодинамическими свойствами.

Зависимость единиц измерения температуры от свойств вещества, используемого в термометре, объясняет наличие многообразия температурных шкал: Цельсия, Реомюра, Фаренгейта и т.д. Все это затрудняет использование их показаний для выполнения расчетов и сопоставления термодинамических параметров различных веществ.

Теорема Карно позволила обосновать абсолютную термодинамическую шкалу температур, которая не зависит от свойств веществ.

Принцип построения такой шкалы основан на создании последовательной цепочки циклов Карно, каждый из которых использует теплоту q 2 предыдущего цикла как теплоту q 1 для последующего цикла (рис.8.13). Например, в цикле 1234 совершается работа l t , а его отведенная теплота q 2 используется в виде подведенной теплоты q 1 в цикле 4356 и т.д. Приняв работу всех циклов одинаковой (l t =const), получим равенство температурных интервалов, в котором реализуется каждый цикл (DT=const), поскольку все они осуществляются в одинаковых диапазонах изменения энтропии (Ds=const):

Получается, что это изменение температуры пропорционально работе цикла Карно.

Построенная на таком принципе температурная шкала будет абсолютной, т.е. не зависящей от свойств вещества, поскольку показатели экономичности цикла Карно не зависят от свойств рабочего тела. В таком термометре, используя любое вещество, совершив одинаковую работу, получим одинаковое изменение его температуры.

В международной системе единиц (СИ) в качестве единицы абсолютной – термодинамической шкалы температур – принят кельвин (название в честь Томсона лорда Кельвина, обосновавшего в 1848 г. абсолютную термодинамическую шкалу температур).

Кельвин – единица измерения температуры по термодинамической шкале, для которой тройной точке воды соответствует значение 273,16 К. Это число выбрано исходя из того, чтобы один градус Цельсия равнялся одному градусу Кельвина. Температура таяния льда при нормальном давлении на 0,01º ниже температуры тройной точки воды, следовательно, 0 ºС соответствует 273,15 К.

Однако практически реализовать обратимый цикл Карно невозможно, поэтому для измерения абсолютной температуры используют газовые термометры, в которых газ находится при низком давлении и подчиняется уравнению Клапейрона – Менделеева: Pv=RT. При постоянном объеме газа в этих термометрах абсолютная температура пропорциональна давлению, что позволяет измерить абсолютную температуру газа через его давление: T=Pv/R.

При значении температуры холодного источника 0 К для обратимого цикла Карно КПД равен единице. В этом случае вся подведенная теплота горячего источника должна превратиться в работу. В случае температуры холодного источника меньше 0 К в цикле Карно оказалось бы получено больше работы, чем подведено теплоты, что противоречит первому закону термодинамики. Таким образом, был сделан вывод о невозможном существовании тел с температурой меньше 0 К.

Вопрос о возможности существования тел с температурой равной 0 К относится к началу ХХ века. Занимаясь теоретическими и экспериментальными исследованиями в области очень низких температур, близких к 0 К, В.Нернст обнаружил, что при приближении к температуре 0 К теплоемкости всех веществ стремятся к нулю. Используя исследования Нернста, М.Планк показал, что вблизи абсолютного нуля все процессы должны протекать без изменения энтропии. На основании этого анализа Планк высказал предположение, что при температуре, равной 0 К для всех веществ, находящихся в равновесном состоянии, энтропия обращается в нуль. Эти утверждения Нернста и Планка составляют содержание третьего начала термодинамики.

Пользуясь третьим началом термодинамики, можно доказать, что абсолютный нуль температуры недостижим. На этом основании третий закон термодинамики может быть сформулирован в следующем виде: никаким способом невозможно охладить тело до температуры абсолютного нуля, т.е. абсолютный нуль температуры недостижим. Формулировку третьего начала термодинамики, близкую к этой, дал Нернст, поэтому она и получила название теоремы Нернста.



Утверждение о недостижимости абсолютного нуля температуры не связано со вторым законом термодинамики. Из этого утверждения лишь следует, что КПД цикла Карно всегда меньше единицы.

Которая не зависит от особенностей термометрического вещества и устройства термометра.

Поэтому прежде чем перейти непосредственно к рассмотрению термодинамической шкалы температур, сформулируем теорему, которая называется теоремой Карно:

Теорема Карно

Все обратимые машины, работающие по циклу Карно, имеют одинаковый коэффициент полезного действия.

Здесь надо подчеркнуть, что речь идет не о том, что все обратимые машины имеют равный КПД, а о том, что все обратимые машины, работающие по циклу Карно, имеют равный КПД при одних и тех же заданных температурах нагревателя и холодильника. Мы эту теорему доказывать не будем, так как доказательство довольно простое и встречается во всех учебниках по термодинамике. Кроме того, в предыдущих главах была получена формула для расчета КПД цикла Карно, при выводе которой не делалось никаких ограничений по веществу рабочего тела и по конструкции теплового двигателя, при этом мы получили, что КПД цикла Карно зависит только от температур нагревателя и холодильника.

\[\eta =1-\frac{Q_{ch}}{Q_n}\ \left(1\right),\]

где $Q_n$ - количество теплоты, полученное рабочим телом от нагревателя, $Q_{ch}$- количество теплоты, отданное рабочим телом холодильнику. Так как $\eta $ имеет одинаковые значения для всех тепловых машин, работающих по обратимому циклу Карно с температурой нагревателя и температурой холодильника. Обозначим временно величины этих температур ${\theta }_1\ и\ {\theta }_2,$ то для отношение $\frac{Q_{ch}}{Q_n}$ можно записать:

\[\frac{Q_{ch}}{Q_n}=f\left({\theta }_1\ ,\ {\theta }_2\right)\left(2\right),\]

где $f\left({\theta }_1\ ,\ {\theta }_2\right)$ - функция температур холодильника и нагревателя, универсальная для всех циклов Карно. Покажем, что $f\left({\theta }_1\ ,\ {\theta }_2\right)$ можно представить в виде:

где $\varphi \left(\theta \right)$ - универсальная функция от температуры.

Отношение двух термодинамических температур

Рассмотрим две обратимые машины (рис.1). Холодильник одной машины -- нагреватель для другой. Допустим, что вторая машина отбирает от нагревателя с температурой ${\theta }_2$- столько тепла, сколько отдает ему первая машина (${Qch}_2={Qn}_2$). Исходя из (2), для каждой машины запишем:

\[\frac{Q_{ch2}}{Q_{n1}}=f\left({\theta }_1\ ,\ {\theta }_2\right)\left(4\right),\] \[\frac{Q_{ch3}}{Q_{ch2}}=f\left({\theta }_2\ ,\ {\theta }_3\right)\left(5\right).\]

Если рассмотреть машину на рис.1 как единую с тепловым резервуаром температуры (${\theta }_1$) и холодильником с температурой (${\theta }_3$), то получим:

\[\frac{Q_{ch3}}{Q_{n1}}=f\left({\theta }_1\ ,\ {\theta }_3\right)\left(6\right).\]

Разделим (6) на (4), имеем:

\[\frac{Q_{ch3}}{Q_{ch2}}=\frac{f\left({\theta }_1\ ,\ {\theta }_3\right)}{f\left({\theta }_1\ ,\ {\theta }_2\right)}=\frac{Q_{n2}}{Q_{ch2}}\left(7\right).\]

Сравниваем (7) и (5), получаем:

Уравнение (8) связывает температуры, связывает все температуры${\ \theta }_1\ ,\ {\theta }_2,\ {\theta }_3.$ Решим, что ${\ \theta }_1$ постоянна, получим, что функция $f\left({\theta }_1\ ,\ \theta \right)$ -- функция одной переменной $\theta $. Обозначим эту функцию $\varphi (\theta)$, тогда уравнение (8) примет вид:

Что совпадает с тем, что мы хотели доказать, то есть с выражением (3).

Функция $\varphi \left(\theta \ \right)$ зависит только от температуры. Поэтому ее значение можно использовать для характеристики температуры соответствующего тела, то есть полагать температуру равной $\varphi $, где $\varphi =\varphi \left(\theta \ \right).$ В таком случае уравнение (4) примет вид:

\[\frac{Q_{ch2}}{Q_{n1}}=\frac{{\varphi }_2}{{\varphi }_1}\ \left(11\right).\]

Соотношение (11) ложится в основу термодинамической шкалы температур. Ее преимущество -- независимость от выбора рабочего тела в цикле Карно, которое используют для измерения температуры.

Величину $\varphi $ принимают за меру температуры тела и называют абсолютной термодинамической температурой. В примерах мы покажем, что она совпадает с используемой нами ранее с абсолютной температурой T по шкале идеального газового термометра. В выражении (11) мы видим отношение двух термодинамических температур. Чтобы определить температуру одного тела можно:

  • взять какие-либо две постоянные температурные точки (например, температуру плавления льда $T_i$ при нормальных условиях и температуру кипения воды ($T_k$)). Найти разность количества теплоты кипения $(Q_k)$ и плавления $(Q_i)$, допустим, что разность ${(Q}_k-Q_i)=100$ градусам, тогда температурный интервал делим на 100 равных частей, каждая часть кельвин. Решаем систему из двух уравнений:
  • \[\frac{T_k}{T_i}=\frac{Q_k}{Q_i},\ T_k-T_i=100\ (12)\]

    вычисляем температуры. Отношение теплот можно измерить или найти косвенным вычислением.

  • Второй метод: для сопоставления температур двух тел необходимо осуществить цикл Карно, в котором исследуемые тела использовать, как нагреватель и холодильник. Отношение, отданное теплоты к полученной теплоте -- есть отношение температур исследуемых тел.

Абсолютная термодинамическая температура не может быть отрицательной. Самая низкая температура, которую допускает второе начало термодинамики : T=0K. Абсолютная термодинамическая шкала температур тождественна с абсолютной шкалой.

Задание: Докажите тождественность термодинамической шкалы температур с абсолютной шкалой идеального газового термометра, используя цикл Карно. В качестве рабочего тела рассмотрите 1 моль идеального газа.

Найдем количество теплоты, которое получило рабочее тело. Поступление теплоты происходит на изотермическом участке 1-2.

Первый интеграл равен нулю, так как мы имеем дело с изотермическим процессом , а второй -- работе при $T_n=const$ (которая рассчитывалась в разделе изотермический процесс). На участке 3-4 система тепло отдает в холодильник при температуре $T_{ch}$. Запишем $Q_{ch}$:

Найдем отношение:

\[\frac{Q_{ch}}{Q_n}=\frac{RT_{ch}ln\frac{V_4}{V_3}}{RT_nln\frac{V_2}{V_1}}\left(1.3\right).\]

Выясним, как соотносятся отношения объемов. Для этого используем уравнения адиабат для соответствующих процессов в цикле Карно:

Соответственно выражение (1.3) будет иметь вид:

\[\frac{Q_{ch}}{Q_n}=\frac{T_{ch}}{T_n}\left(1.5\right).\]

Сравниваем уравнение (1.5) с выражением, которое было получено для отношения термодинамических температур (1.6):

\[\frac{Q_{ch}}{Q_n}=\frac{{\varphi }_2}{{\varphi }_1}\ \left(1.6\right).\]

Можно сделать вывод о том, что абсолютная термодинамическая шкала температур станет тождественной с соответствующей температурной шкалой идеального газового термометра, если в обоих случаях температуре основной реперной точки приписать одно и тоже значение. Так как на практике так и поступают, то считаем, что тождественность $\varphi =T$ доказана.

Пример 2

Задание: Докажите, что термодинамическая температура не может быть меньше нуля.

Пусть тело с температурой $T_{ch} \[\eta =1-\frac{T_{ch}}{T_n}\left(2.1\right),\]

если $T_{ch}0,\ $ получается $\eta >1$, что противоречит второму началу термодинамики, следовательно, неосуществимо.



error: