Чувствительность относится к. Повышенная чувствительность, ВЧЛ: что это такое? Что такое повышенная чувствительность

Наблюдая за творческими личностями, нельзя не отметить их повышенной чувствительности. Чувствительность зарождает душевные переживания, она порождает бурю эмоций, именно она позволяет художнику проникать в тайны мира и являть их отражение в своих произведениях.

В научной литературе такое тонкое устройство души называют сенситивностью.

Сенситивность – особенность личности, выражающаяся в повышенной чувствительности и ранимости, неуверенности в себе, повышенной совестливости и склонности к сомнениям, фиксации на своих переживаниях.
Большой медицинский словарь

Наши чувства – наиболее важная и сложная сторона духовной жизни. Это не просто мимолетные ощущения. Это опыт, накопленный благодаря нашей наблюдательности, внимательности и восприимчивости. Чувствительность к искусству, объектам вокруг нас, людям, с которыми мы общаемся, несомненно, обогащает наш внутренний мир, делая нас духовно наполненными и открытыми.

  • Чувствительность – это яркие эмоции, которые раскрашивают нашу жизнь в светлые тона.
  • Чувствительность – это сочувствие и сопереживание.
  • Чувствительность – это умение воспринять не столько рационально, сколько эмоционально.
  • Чувствительность – это путь к эстетическому наслаждению.

Преимущества чувствительности

  • Благодаря чувствительности мы постигаем сущность происходящего с нами.
  • Благодаря чувствительности мы обогащаем наш внутренний мир и имеем возможность строить внутреннюю гармонию.
  • Чувствительность заставляет создавать уникальные и незабываемые произведения искусства, так как они идут из самой глубины души.
  • Наша чувствительность позволяет проявиться эстетическому вкусу и художественным переживаниям.

Проявления чувствительности в повседневной жизни

Чувствительность в повседневной жизни может проявляться в абсолютно разных ситуациях и зачастую она способна вызывать еще большие добродетели.

  • Яркая, надрывная игра актера или музыка, богатая множеством эмоциональных оттенков, дают возможность проявиться нашей чувствительности.
  • Чувствительность вкупе с образным мышлением подталкивают многих из нас к выражению своих переживаний с помощью искусства – стихов, живописи, музыки.
  • Свою чувствительность мы проявляем, сопереживая другим людям – близким или незнакомым. Чувствительный человек всегда с легкостью сможет понять другого человека и разделить его эмоции.
  • Именно чувствительность заставляет нас сострадать и жертвовать для других людей своим временем, средствами, а возможно, даже жизнью.

Как развить чувствительность

Конечно, мы будем говорить о балансе и золотой середине. Сверхчувствительность подразумевает слишком активное переосмысление происходящего вокруг. В мире, полном стресса, потрясений и эгоизма, чрезмерная сенситивность может угрожать нашей внутренней гармонии. Поэтому, воспитывая в себе чувствительность, необходимо найти и философский подход к жизни.

Развивать чувствительность лучше всего с помощью произведений искусства – живописи, музыки, литературы. Попытайтесь понять героя произведения, перенести его чувства на себя и представить, что бы чувствовали вы, оказавшись в подобной ситуации. В мировой классической литературе поступкам героев часто дается подробное объяснение, поэтому их можно использовать в качестве «практического пособия» по детальному разбору эмоций других людей.

Будьте более внимательны к окружающим вас людям. Во время разговора с ними постарайтесь с помощью вопросов понять, почему они поступили так или иначе, что они чувствовали в тот момент.

Чувствительность развивать непросто, однако она поможет вам легче находить общий язык с другими людьми и выстраивать ваши с ними отношения на совершенно ином, более высоком уровне.

Золотая середина

Черствость

Чувствительность

Чрезмерная сенситивность

Крылатые выражения о чувствительности

Почувствовать – еще не значит понять. - А.Н. Афиногенов - Чувства – самая яркая часть нашей жизни. - Бальзак - Можно быть хозяином своих действий, но в чувствах мы не вольны. - Г. Флобер - Чувство – это канун появления мысли. - И.Н. Певцов - Можно сильно, живо и пламенно чувствовать и вместе с тем не уметь выражать своих чувств. - В.Г. Белинский - Эскивель Лаура / Книга о чувствах Как и почему чувство рождается и умирает? Можно ли выразить его в словах? Есть ли способ преодолеть ужасное зло современности — депрессию? Сделать мир вокруг себя счастливее? Обрести внутреннюю гармонию? Вот лишь некоторые из множества вопросов, над которыми размышляет своеобразная мексиканская писательница. И ответы ее поразительно неожиданны. Александр Берзин / Развитие сбалансированной чувствительности: практические буддийские упражнения для повседневной жизни Достижение эмоционального равновесия или поддержание здоровых взаимоотношений никогда не бывают легкими. Тем не менее, по разным причинам, мы еще больше усложняем эти проблемы. Среди таких проблем недостаток чувствительности или бесчувственность в одних ситуациях и несоразмерная чувствительность или гиперреакция в других. Автор, адаптируя методы Будды для самосовершенствования к современным западным условиям, рассматривает эти проблемы в соответствии с особенностями западных культурных особенностей.

Чувствительность является мерой способности радиоприемного устройства обеспечивать прием слабых радиосигналов. Количественно оценивается минимальным значением ЭДС сигнала на входе радиоприемного устройства, при котором имеет место требуемое отношение сигнал-шум на выходе при отсутствии внешних помех.

Чувствительность радиоприёмника, способность радиоприёмника принимать слабые по интенсивности радиосигналы и количественный критерий этой способности. Последний во многих случаях определяется как минимальный уровень радиосигнала в приёмной антенне (эдс, наводимая сигналом в антенне и выражаемая обычно в мв или мкв , либо напряжённость поля вблизи антенны, выражаемая в мв/м ), при котором содержащаяся в радиосигнале полезная информация ещё может быть воспроизведена с требуемым качеством (с достаточными громкостью звучания, контрастностью изображения и т.п.). В простейших радиоприёмниках чувствительность зависит главным образом от степени усиления сигналов в них: с увеличением коэффициента усиления нормальное воспроизведение информации достигается при более слабом радиосигнале ( считается при этом более высокой). Однако в сложных радиоприёмных устройствах (например, связных) такой путь повышения Чувствительность радиоприёмника теряет смысл, поскольку в них интенсивность полезных радиосигналов может оказаться сравнимой с интенсивностью действующих на антенну одновременно с этими сигналами внешних помех радиоприёму , искажающих принимаемую информацию. Предельная Чувствительность радиоприёмника в этом случае называется чувствительностью, ограниченной помехами; она является параметром не только приёмника, но зависит и от внешних факторов. При наиболее благоприятных условиях (главным образом при приёме в диапазоне метровых и более коротких волн и особенно при космической радиосвязи) внешние помехи слабы и основным фактором, ограничивающим Чувствительность радиоприёмника , становятся внутренние флуктуационные шумы радиоприёмника (см. Флуктуации электрические ). Последние в нормальных условиях работы радиоприёмника имеют постоянный уровень, поэтому Чувствительность радиоприёмника , ограниченная внутренними шумами, - вполне определённый параметр; за меру Чувствительность радиоприёмника в этом случае часто принимают непосредственно уровень внутренних шумов, характеризуемый коэффициентом шума или шумовой температурой (см. также Пороговый сигнал ).Чувствительность приемника - одна из главных его характеристик, которая определяет возможность дальнего приема передач. Чем меньше чувствительность, тем "дальнобойнее" приемник. Поэтому применительно к чувствительности обычно пользуются выражениями лучше-хуже вместо больше-меньше, понимая под лучшей чувствительностью такую, которая выражается ее меньшим значением. Существует несколько определений чувствительности, и во избежание путаницы всегда необходимо знать, о какой чувствительности идет речь. Приняты следующие определения: чувствительность, ограниченная усилением; чувствительность, ограниченная синхронизацией; чувствительность, ограниченная шумами.

Чувствительность радиоприемника является параметром, который позволяет оценить возможность приемника принимать слабые сигналы радиостанций. Различают максимальную и реальную чувствительность приемника.

Реальная чувствительность определяет минимальный уровень входного сигнала, при котором обеспечивается стандартная (испытательная) выходная мощность при заданном соотношении напряжения входного сигнала к напряжению шумов. Для отечественных приемников испытательная выходная мощность принята равной 50 или 5 мВт, в зависимости от класса приемника. Заданное соотношение сигнал-шум при измерении реальной чувствительности приемника в диапазонах ДВ, СВ, KB - не менее 20 дБ, на УКВ - не менее 26 дБ.

Чувствительность приемника по напряжению (для наружных антенн) измеряется в микровольтах. Чувствительность приемника тем выше, чем меньше это напряжение. При работе с внутренней (встроенной) антенной чувствительность выражается минимальной напряженностью электрического поля и измеряется в микровольтах или милливольтах на метр (мкВ/м или мВ/м).

Максимальная чувствительность - это чувствительность, ограниченная усилением. Она определяет такой минимальный уровень сигнала, при котором обеспечивается стандартная (испытательная) выходная мощность при установке всех органов управления приемника в положения, соответствующие максимальному усилению. Чувствительность радиоприемника зависит от многих факторов: усилительных свойств всех каскадов тракта приемника, уровня собственных шумов, ширины полосы пропускания и др.

Современные приемники обладают очень высокой чувствительностью. Например, приемники высшего класса в УКВ диапазоне имеют чувствительность 1... 2 мкВ, а в диапазоне KB - 5... 10 мкВ.

Чувствительность радиоприемника обычно выражается в мил­ливольтах на метр (мВ/м) или в микровольтах (мкВ). Наибольшей чувствительностью обла­дают супергетеродинные радиопри­ёмники (супергетеродины), в которых с помощью специальных устройств- гетеродина и смесителя-перед детек­тированием производится преобразование (понижение) частоты радиосигнала, не изме­няющее закона модуляции. Полученный в результате преобразования сигнал т. н. про­межуточной частоты дополнительно усилива­ется по ней, после чего детектируется и снова усиливается (по звуковой частоте).

Свойство радиоприемного устройства, позволяющее отличать полезный радиосигнал от радиопомехи по определенным признакам, свойственным радиосигналу, называется избирательностью . Иначе, это способность радиоприемного устройства выделять нужный радиосигнал из спектра электромагнитных колебаний в месте приема, снижая мешающие радиосигналы.

Различают пространственную и частотную избирательности. Пространственная избирательность достигается за счет использования антенны, обеспечивающей прием нужных радиосигналов с одного направления и ослабление радиосигналов с других направлений от посторонних источников. Частотная избирательность количественно характеризует способность радиоприемного устройства выделять из всех радиочастотных сигналов и радиопомех, действующих на его входе, сигнал, соответствующий частоте настройки радиоприемника.

Избирательность - параметр, характеризующий способность радиоприемника принимать и усиливать сигнал рабочей частоты на фоне "мешающих" сигналов других передатчиков, работающих на соседних каналах (частотах). Этот параметр часто путают или смешивают с понятием "помехозащищенность". Помехозащищенность - более широкое, нежели избирательность, понятие. Ведь помехой можно считать как сигнал другого передатчика, который излучает постоянно на соседней частоте, так и кратковременный разряд молнии, при котором излучается очень широкий спектр частот. Но если относительно узкополосный сигнал соседнего передатчика удается нейтрализовать схемотехническими решениями (частотной селекцией или фильтрацией), то широкополосный кратковременный сигнал помехи отфильтровать практически невозможно, и с помехой приходится бороться другими способами, в частности, применяя специальные способы кодирования и последующей обработки информационной составляющей сигнала. Именно на этом принципе построены РСМ-устройства.

Термин "избирательность" в характеристике радиоприемного устройства обычно дополняют словами "по соседнему каналу" и характеризуют его при помощи конкретных физических понятий и величин. Обычно это звучит примерно так: "избирательность приемника по соседнему каналу составляет - 20 dB при расстройке +/- 10 кГц". Физический смысл этой неуклюжей фразы таков: если частота "мешающего" сигнала отличается от "рабочей" частоты на 10 кГц (выше или ниже), то при равных уровнях "полезного" и "мешающего" сигналов на входе приемника, уровень "мешающего" сигнала на выходе приемника будет на 20 dB (в 10 раз) меньше уровня "полезного" сигнала. А если этот параметр будет равен -40 dB, то "мешающий" сигнал ослабнет в 100 раз и т.д. Иногда этот многоэтажный параметр заменяют одной из составляющих - шириной полосы пропускания. Ширина пропускания в выше приведенном примере равна 20 кГц, или +/- 10 кГц относительно центральной частоты (которая у нас определяется номером канала). Дальше мы поясним это при помощи спектральной диаграммы. А вот "помехозащищенность" РРМ приемника, к сожалению, однозначно охарактеризовать не удается.

В УКВ диапазоне избирательность по соседнему каналу измеряется при двух значениях расстройки мешающего сигнала - 120 и 180 кГц. Это объясняется тем, что для системы радиовещания в диапазоне УКВ, ближайший соседний канал (мешающий) отстоит от частоты полезного сигнала на 120 кГц, когда оба сигнала имеют одну и ту же синфазную модуляцию, а ближайший соседний канал, имеющий другую модуляцию, отстоит от частоты полезного сигнала на 180 кГц.

Избирательность по соседнему каналу определяется в основном трактом промежуточной частоты и в пределах диапазона изменяется незначительно.

Избирательность по зеркальному каналу определяет ослабление радиоприемником мешающего сигнала, отстоящего от принимаемого на удвоенное значение промежуточной частоты. Селективные (избирательные) свойства радиоприемника по зеркальному каналу определяются резонансными свойствами избирательных цепей до преобразователя частоты (входных цепей, УВЧ).

Избирательность по промежуточной частоте определяет ослабление приемником мешающего сигнала, частота которого равна промежуточной частоте приемника. Работа радиостанций на этих частотах запрещена. Однако в ряде случаев гармоники радиостанций могут совпадать с промежуточной частотой приемника. При этом они могут быть сильными помехами при приеме других радиостанций.

Ослабление помехи с частотой, равной промежуточной, осуществляется резонансными контурами входных цепей и усилителя высокой частоты. Для большего ослабления этой помехи на входе приемника включают специальный фильтр, который настраивают на промежуточную частоту и тем самым ослабляют проникновение помехи во входные контуры приемника.

    Рецепция – способность организма воспринимать информацию из внешней и внутренней среды. Первичное восприятие всех раздражителей в организме человека осуществляетсярецепторами – специфическими клетками, воспринимающими воздействия внешней и изменения внутренней среды организма.

    Чувствительность – способность организма воспринимать информацию (стимулы) из внешней и внутренней среды и отвечать на нее дифференцированными формами реакций.

    Анализатор – функциональное объединение структур, осуществляющее восприятие и анализ информации (рецептор – проводящие пути – корковый центр).

2. Классификация чувствительности:

    Виды чувствительности по модальности:

1) Простая

- экстерорецепция :дистантная – слух, зрение;контактная – болевая, тактильная, температурная, чувство давления (пиестезия), вкусовая;смешанная (?)– обоняние

- интерорецепция (хемо-, баро-, осморецепторы),

- проприоцепция (суставно-мышечное чувство – кинестезия, чувство движения кожной складки – дерматокинестезия, вибрационная – сейсмостезия, чувство веса – баростезия).

2) Сложная

- локализационная (топестезия),

- дискриминационная ,

- двумерно-пространственная (графестезия, дерматолексия),

- трехмерно-пространственная (стереогноз).

    Виды чувствительности по уровню обработки информации:

1) Протопатическая (таламическая или витальная) - воспринимает грубые воздействия, угрожающие жизни организма – волокна типа В и С.

2) Эпикритическая (корковая, гностическая) - обеспечивает тонкое распознавание и дифференцировку различных воздействий – волокна типа А.

Закон Геда-Шерера (1905) – в процессе регенерации чувствительного нерва происходит сначала восстановление протопатической, а затем эпикритической чувствительности.

3. Периферические составляющие системы чувствительности:

    Типы контактных экстерорецепторов:

1) Болевые: ноцицептор - ноцицептивная система (см.далее).

2) Температурные: тепло - окончание Руффини ихолод - луковица Краузе.

3) Осязательные (1 тип рецепторов - с небольшими, очерченными полями): диск Меркеля (медленно адаптирующийся) и тельце Мейсснера (быстро адаптирующийся).

4) Давления и веса (2 тип рецепторов - с обширными полями): тельце Гольджи-Маццони (медленно адаптирующийся) и тельце Фатера-Паччини (быстро адаптирующийся).

5) Вибрации – рецепторы надкостницы

    Типы проприорецепторов (подробно см.тему «Рефлекторно-двигательная сфера»):

1) Мышечные веретена 1 и 2 типа.

2) Сухожильные рецепторы (тельце Гольджи).

    Типы чувствительных волокон:

1) толстые миелиновые типа А-альфа (40-50 м/с) - проприоцепция;

2) толстые миелиновые типа А-бета (30-40 м/с) - тактильная;

3) толстые миелиновые типа А-гамма (20-30 м/с) - давление;

4) тонкие миелиновые типа В (10-14 м/с) – боль и температура;

5) безмиелиновые типа С (2 м/с) – боль (протопатическая).

Чувствительность: морфофизиология

1. Общие особенности трехнейронных путей поверхностной и глубокой чувствительности

    Первый нейрон находится в спинномозговом (черепном) узле.

    Аксоны вторых нейронов совершают перекрест.

    Третий нейрон находится в вентролатеральном комплексе таламуса, его аксон - таламокортикальный путь проходит через заднюю треть задней ножки внутренней капсулы и лучистый венец, оканчивается в задней центральной извилине и верхней теменной области.

Чувствительность дефектоскопа, определяемая в общем случае как возможность дефектоскопа выявлять отражатели заданного размера, является важнейшим параметром, определяющим в основном достоверность и воспроизводимость контроля.

Проведение контроля при произвольном уровне чувствительности дефектоскопа может привести к пропуску опасных дефектов или к напрасному забракованию изделий в результате регистрации эхосигналов от мелких неопасных дефектов или даже от структурных неоднородностей. Поэтому обнаружение дефектов, оценка их размеров и отбраковка продукции должны производиться на строго определенных уровнях чувствительности.

Различают несколько видов чувствительности: реальную, абсолютную, предельную, браковочную, поисковую и условную.

Реальная чувствительность определяется минимальными размерами реальных дефектов, которые могут быть обнаружены в изделиях данного вида при выбранной настройке дефектоскопа. В силу различных отражающих свойств реальная чувствительность к трещинам будет отличаться от реальной чувствительности к включениям и т.д. Численное выражение реальной чувствительности определяется на основании статического анализа выявленных дефектов в данном изделии, которые были измерены при вскрытии.

Абсолютная чувствительность характеризует максимально достижимую чувствительность электроакустического и электрического трактов дефектоскопа к акустическим сигналам. Она может измеряться величиной резерва чувствительности до появления шумов при полностью введенных регуляторах усиления и мощности по отношению к опорному донному сигналу от плоскости, расположенной на расстоянии от преобразователя. Эта характеристика необходима для оценки потенциальных возможностей дефектоскопа с данным преобразователем (размеров минимального выявляемого дефекта и глубины прозвучивания). Современные дефектоскопы имеют абсолютную чувствительность порядка 80-100 дБ.

Предельная чувствительность определяется наименьшей площадью плоскодонного отверстия, соосного с акустической осью преобразователя, расположенного в данном испытательном образце на данной глубине и уверенно выявляемого при заданной настройке дефектоскопа. Этот уровень часто называют контрольной чувствительностью, а искусственный отражатель, по которому он настраивается – контрольным отражателем. Предельная чувствительность является основным параметром контроля и обычно регламентируется соответствующими нормативными документами.

Эквивалентной площадью (диаметром) называют площадь (диаметр) плоскодонного отверстия, залегающего на той же глубине, что и реальный дефект, и дающий ту же амплитуду эхо-сигнала.

Предельную чувствительность, распространенную на весь объем контролируемого изделия называют уровнем фиксации (контрольным уровнем) или уровнем браковки . Уровень фиксации определяется эквивалентной площадью дефекта, который должен выявляться во всем объеме контролируемого изделия; уровень браковки – эквивалентной площадью дефекта, недопустимого в данном изделии. Уровни фиксации и браковки установлены в нормах контроля данного изделия.

Браковочная чувствительность характеризуется максимальной площадью плоскодонного отражателя, предельно допустимого по действующим техническим условиям для данного изделия. Обычно ее уровень на 3,5-6 дБ (в 1,5-2 раза) ниже, чем уровень предельной чувствительности.

Поисковая чувствительность определяет уровень усиления дефектоскопа при поиске дефектов. Необходимость ее введения обусловлена тем, что предельная чувствительность дефектоскопа в процессе сканирования значительно ниже, чем при неподвижном положении преобразователя. Поисковая чувствительность обычно на 5-8 дБ превышает уровень предельной чувствительности.

Настройку на предельную чувствительность (на заданной глубине), уровни фиксации и браковки выполняют по искусственным дефектам. Не обязательно изготовление дефектов типа плоскодонного отверстия. Можно воспользоваться другими отражателями или донным сигналом и выполнить пересчет по формулам акустического тракта или АРД-диаграммам.

Условную чувствительность дефектоскопа с преобразователем определяют по максимальной глубине (мм) расположения отражателя – бокового отверстия диаметром 2 мм, уверенно выявляемого дефектоскопом в стандартном образце СО-1 из плексигласа (рис. 4.1,а) или по разности (дБ) между показаниями аттенюатора N x , для которого определяется чувствительность, и показанием N 0 , при котором еще уверенно выявляется отражатель диаметром 6 мм на глубине 44 мм в стандартном образце СО-2 (рис. 4.1,б).

Условные чувствительности по СО-1 и СО-2 могут быть сопоставлены экспериментально.


Некоторому значению предельной чувствительности соответствует определенное значение условной. Предельная чувствительность может быть воспроизведена по условной, если значения f 1 , a 0 , 2а, t преобразователей соответствуют тем значениям, для которых была задана условная чувствительность. Часто настраивают уровень фиксации по искусственным дефектам в лаборатории и там же определяют условную чувствительность, а затем воспроизводят уровень фиксации на месте контроля по небольшим образцам СО-1 или СО-2.

Эталонирование чувствительности по испытательным образцам является самым распространенным способом. При этом способе эталонирование чувствительности производится по испытательному образцу или непосредственно на контролируемом изделии, в котором выполнено плоскодонное отверстие или другой отражатель эквивалентной площадью, регламентируемой соответствующими нормативными документами.

Прямым способом можно эталонировать чувствительность дефектоскопа любого типа. Способ наиболее прост и автоматически учитывает влияние многих факторов на параметры акустического тракта. Но он весьма дорогостоящий, так как требует изготовления большого набора испытательных образцов с различными отражателями. Испытательный образец изготовляют из стали той же марки, что и контролируемое изделие. Обязательными условиями являются соответствие качества поверхности испытательного образца качеству поверхности контролируемого изделия и проведение термообработки, если она предусмотрена для контролируемого изделия. Размеры образца должны быть такими, чтобы на эхо-сигнал от отражателя не накладывались ложные сигналы от стенок и углов образца. Эти ложные сигналы должны быть по развертке значительно дальше опорного эхо-сигнала.

На испытательном образце на расстоянии не менее 20 мм от одного из краев делают искусственные эталонные отражатели, соответствующие требуемой предельной или браковочной чувствительности. Производить настройку чувствительности по образцам с реальными дефектами нельзя. Это объясняется невозможностью точного определения размеров и формы реальных дефектов и воспроизведения их при тиражировании образцов.

Выбор типа отражателя определяется его отражательными свойствами, технологичностью изготовления и возможностью выдерживания заданных размеров: ГОСТы 21397-81, 24507-80 и 14782-86 предусматривают применение следующих эталонных отражателей: плоскодонное отверстие, боковой цилиндрический отражатель, сегментный отражатель и угловой отражатель.

Плоскодонное отверстие изготовляют в испытательном образце так, чтобы его ось совпадала с осью ультразвукового пучка (рис. 4.2,а). При настройке РС-преобразователя ось отверстия должна быть перпендикулярна поверхности образца. У данного эталонного отражателя имеется существенное достоинство – крутая монотонная зависимость приращения амплитуды эхо-сигнала от диаметра отражателя.

Боковой цилиндрический отражатель (боковое отверстие) наиболее легко изготавливаемый тип отражателя (рис. 4.2,б). Основными преимуществами бокового отражателя являются легкость изготовления, хорошая воспроизводимость результатов и возможность использования для преобразователей любых типов.

В химическом машиностроении для настройки чувствительности дефектоскопа при контроле сварных швов широко распространен сегментный отражатель (рис. 4.2,в). Его изготовляют с помощью фрезы на поверхности образца. Отражающая поверхность сегмента радиусом b с должна быть перпендикулярна преломленной акустической оси преобразователя. К сожалению, из-за влияния донной поверхности такой отражатель может использоваться только при a=(52±5)°.

Высота h сегментного отражателя должна быть больше длины ультразвуковой волны; отношение h/b сегментного отражателя должно быть более 0,4.

Угловой отражатель (зарубка) хорошо имитирует выходящие на поверхность трещины и непровары (рис. 4.2,г). Анализ отражения ультразвуковых волн от моделей дефектов в виде угловых отражателей показал, что отраженное от зарубки поле формируется в основном в результате двукратного отражения волн от дефекта и поверхности изделия (углового эффекта).

Предельную чувствительность от плоскодонного отверстия на предельную чувствительность от зарубки перерассчитывают по формуле S з =S п /N, где N– коэффициент, определяемый по графику N=f(e) (рис.4.3). Коэффициент N практически не зависит от материала.

Зарубки выдавливаемые специально заточенным инструментом – бойком.

Ширина b и высота h углового отражателя должна быть больше длины ультразвуковой волны: отношение h/b должно быть более 0,5 и менее 4,0.


Рис. 4.3. Зависимость N = f (e) для стали,

алюминия и его сплавов, титана и его сплавов.

Если производят контроль не всего наплавленного металла за один проход, а по слоям (последовательно верхнего, среднего и нижнего), то отражатель должен находиться на глубине нижней границы соответствующего слоя.

Способ эталонирования по АРД-диаграммам (амплитуда – расстояние - диаметр) состоит в том, что предельную чувствительность, выраженную через эквивалентную площадь отражателя, устанавливают как долю от опорного эхо-сигнала, полученного от двугранного угла, бесконечной плоскости или цилиндрической поверхности и т.п. Его применение не требует набора образцов различной толщины. Кроме того, такое эталонирование можно проводить в нескольких точках изделия, что позволяет усреднить эталонный уровень и избавиться от случайных ошибок.

Используют АРД-диаграммы двух видов. Обобщенная безразмерная АРД-диаграмма представляет собой семейство кривых, отражающих зависимость амплитуды сигнала Р/Р 0 в дБ от диаметра дискового отражателя d, расстояния до него r, диаметра пьезоэлемента D и частоты ультразвука f. Она построена в безразмерных параметрах: . Обобщенная АРД-диаграмма (рис. 4.4) является основой для построения специализированных АРД-диаграмм для конкретного преобразователя с помощью перехода от безразмерных параметров к непосредственно измеряемым d и r.

В качестве примера определим с помощью АРД-диаграммы амплитуду сигнала от дефекта диаметром d=6 мм, расположенного в стальном образце на глубине r = 100 мм перпендикулярно оси нормального искателя диаметром D=12 мм (радиус а=6 мм) на частоту 2,5 МГц.

Длина волны мм.

Длина ближней зоны мм.

Приведенное расстояние .

Приведенный диаметр дефекта .

На пересечении вертикали и кривой находим

Отр. дБ=0,053.

Чтобы учесть затухание ультразвука, нужно умножить полученное значение на . Пусть коэффициент затухания равен 0,00125 непер/мм, тогда, переходя к децибелам, получим:

Отр. дБ .

Таким образом, c учетом затухания отр. дБ = 0,0415.

Рис. 4.4. Обобщенная АРД-диаграмма.

vivek_jonam

Почему чувствительность датчика называется «ISO»?

Мне было любопытно узнать, как термин «ISO» был придуман для обозначения чувствительности датчика изображения . Есть ли какая-либо причина или обстоятельство, которое способствовало названию "ISO"?

Кроме того, ISO имеет буквальное расширение?

Если это относится к организации ИСО, почему чувствительность называется просто «ИСО»? Есть ли другое официальное название для обозначения чувствительности датчика?

jrista ♦

Просто записка. Когда речь заходит о «чувствительности» цифровых датчиков, термин «чувствительность» в этом контексте на самом деле немного неправильный. Цифровой датчик представляет собой фиксированное линейное аналоговое устройство. У него всегда одна и та же реальная чувствительность. Когда вы устанавливаете настройку ISO на более высокий уровень, все, что действительно делает, это уменьшает максимальную точку насыщения. Датчик не обнаруживает больше света... он обнаруживает то же самое, поэтому он все еще так же "чувствителен". Это просто, что вместо чистого белого, встречающегося, скажем, с 40 000 электронов в пикселе (ISO 100), это происходит при 20000 электронов (ISO 200) или 10000 электронов (ISO 400) и т. Д.

RBerteig

Три официальных языка ISO - английский, французский и русский. Логотипы организации на двух ее официальных языках, английском и французском, включают слово ISO, и на него обычно ссылается это сокращенное название. Организация заявляет, что ISO не является аббревиатурой или инициализмом полного названия организации на каком-либо официальном языке. [Источник цитирования] Признавая, что его инициалы будут разными на разных языках, организация приняла ISO на основе греческого слова isos (ἴσος, означает равный), как универсальная сокращенная форма его имени. Однако один из делегатов-основателей, Вилли Куэрт, вспомнил первоначальный вопрос об именах с комментарием: «Я недавно прочитал, что название ISO было выбрано, потому что« iso »- это греческий термин, означающий« равный ». Лондон! "

ISO написал много технических стандартов, технических отчетов, технических спецификаций и т. Д. Каждому из них присваивается номер ISO. Тремя стандартами, которые применяются к чувствительности фотопленки, являются ISO 6, ISO 2240 и ISO 5800. Со временем скорость пленки упоминалась как «ISO», потому что число, используемое для описания скорости пленки, соответствовало этим ISO стандарты.

В цифровых камерах «ISO» продолжал использоваться как способ выражения чувствительности цифровой камеры к свету при различных уровнях усиления аналоговых электрических сигналов, поступающих из точек пикселей на датчике камеры. Международная организация по стандартизации выпустила новые стандарты светочувствительности цифровых датчиков. Теоретически, настройка ISO на вашей цифровой камере 400 должна привести к экспозиции, эквивалентной таковой на пленке ISO 400. Чувствительность пленки немного варьировалась от одного производителя пленки к другому. Фильм, который имеет фактическую стоимость, например, 388, основанную на стандартах ISO, будет продаваться как «400 скорость». Аналогично, большинство цифровых камер незначительно отличаются при разных настройках ISO от точного стандарта. По крайней мере, одна компания, DxO , публикует результаты испытаний для многих камер. Если вы перейдете по ссылке и выберете вкладку «Измерения», то увидите, что фактический ISO может варьироваться на 1/2 ступени для трех выбранных мной корпусов камер начального уровня.

Главное, что нужно знать о ISO при фотографировании, это то, что чем выше выбранное вами число ISO, тем «шумнее» будет ваше изображение. Шум - это электрический сигнал от пикселя, который был вызван ничем, кроме падающего на него света. Когда сигнал от датчика усиливается для увеличения ISO, этот шум также усиливается. Поскольку ваша камера (или программное обеспечение для обработки на вашем компьютере) обрабатывает сигналы от вашего датчика, применяются определенные меры для сглаживания шума. Большинство камер имеют настройки, которые позволяют вам выбрать, какое снижение шума вы хотите применить к снимкам, которые вы снимаете. Недостатком интенсивного использования шумоподавления является то, что он также снижает резкость изображения на уровне пикселов. В связи с этим рекомендуется снимать с наименьшим числом ISO, которое позволяет выбирать желаемые комбинации диафрагмы и выдержки. С другой стороны, размытое изображение из-за слишком низкой скорости затвора не может быть исправлено при обработке. С шумным изображением, которое остановило движение вашего объекта, можно справиться в определенной степени.

vivek_jonam

1 за «Со временем скорость фильма стала называться« ISO »»

проклятые истины

Майкл Кларк

Официальное название на английском языке - «Международная организация по стандартам». По-французски это «Международная организация по нормализации». Ни одна из версий не упорядочивает эквивалентные английские слова так же, как "ISO". Ходили слухи, что «ISO» - это сокращение от греческого слова «isos», что означает «равный».



error: