Что значит "многомерное пространство". Большая советская энциклопедия - многомерное пространство Многомерное пространство и действительность

УДК 115

© 2006 г ., А.В. Коротков, В.С. Чураков

Многомерные концепции пространства

и времени (пространства-времени)

Говоря о семимерном пространстве, следует уточнить, почему мы говорим именно о семимерном, а не о n -мерном пространстве, многомерном пространстве. Дело в том, что трехмерное векторное исчисление Гамильтона – Грассмана дает только три закона сохранения, а в физике элементарных частиц выяснились новые законы сохранения барионного числа, лептонного числа, четности, целый ряд законов сохранения. Стало понятно (по крайней мере, в области физики элементарных частиц), что физика должна быть существенно уточнена, расширена до многомерного варианта . Возникает вопрос: какой же размерностью следует обходиться – 4, 5, 6, 8, 129 или 1000001? Вопрос не праздный. Кроме того, даже если будет выяснена размерность физического пространства, что из эксперимента практически невозможно получить, то встанет вопрос о том – какой же математикой пользоваться при описании явлений в этом пространстве данной размерности, не равной трем?

Поэтому следует исходить, прежде всего, из теории чисел. Еще Пифагор отмечал, что все сущее есть число, т.е. физика, теоретическая физика – это теория числа по сути своей, теория трехмерных векторных чисел. Теория поля полностью и целиком построена на трехмерном векторном исчислении. Квантовая механика в том числе. Все разделы теоретической физики пользуются аппаратом трехмерной векторной алгебры трехмерного векторного исчисления. Попытки расширить пространство приводят к анализу, следовательно, самого понятия числа, как такового.

Одномерное векторное число – это пространство на линейке, пространство чисел на линейке. Трехмерное векторное число, трехмерное векторное пространство теперь нам всем хорошо понятно со времен Гамильтона, но не ранее того. Многомерное векторное пространство, определяемое линейной векторной алгеброй, как того требует трехмерное векторное исчисление, может быть получено путем расширения трехмерных векторных пространств, трехмерной векторной алгебры. Таким образом, мы должны в линейном векторном пространстве ввести векторное и скалярное произведения двух векторов. Это, собственно, основная задача теории многомерных чисел – ввести, определить скалярное, первое и второе векторное произведение двух векторов. Подходов к такому определению немного. В общем виде определение этих понятий ничего не дает, кроме путаницы.

Следует исходить из тех принципов, которыми пользовался еще Гамильтон при построении трехмерного векторного исчисления. Он сначала построил путем расширения комплексных чисел алгебру кватернионов, а затем из нее получил скалярное векторное произведение двух векторов в трехмерном векторном пространстве, т.е. в пространстве векторных кватернионов. Если идти по этому пути, то следует расширять, удваивать систему кватернионов до системы октанионов, что сделал Кэли в 1844 году, но дальнейшие преобразования использовать такие же, какие использовал Гамильтон при получении трехмерного векторного числа и четырехмерного кватернионного числа. Если идти по этому пути, то единственно возможной алгеброй, которая получается из алгебры кватернионов, является семимерная векторная алгебра со скалярным, евклидового характера и векторным произведением двух векторов .

То есть сразу дается ответ на два вопроса: какой размерности должно быть пространство? А это именно семь, не четыре, не пять, не шесть. И во-вторых, задано скалярное и векторное произведения двух векторов строго. Это позволяет развернуть алгебру, т.е. получить свойства алгебры, вытекающей из этих двух фундаментальных понятий, что и было в свое время осуществлено на практике. Таким образом, мы получаем семимерную евклидову векторную алгебру с семью ортами ортогональной системы координат, возможно ортогональной, в которой строится семимерный вектор. Сразу возникает целый ряд новых, совершенно новых для алгебры понятий, таких как: векторное произведение не только двух векторов, но и трех, четырех, пяти, шести векторов. Это инвариантные величины, дающие в свою очередь определенные законы сохранения. Среди скалярных величин также появляются величины инвариантные, как функции не только двух векторов скалярного произведения двух векторов, но и как функции большего числа векторов. Это смешанные произведения трех векторов, четырех векторов, семи векторов. По крайней мере, эти функции найдены, уточнены их свойства, и эти функции дают инвариантные понятия типа законов сохранения – законов сохранения этих величин. То есть появляется возможность получения совершенно новых законов сохранения величин, физических величин – при использовании вместо трехмерной алгебры семимерной векторной алгебры. Трехмерные законы сохранения энергии, импульса и момента импульса следуют из этой алгебры просто как частный случай. Они имеют место, сохраняются, никуда не исчезают, они фундаментальны, так же как и новые законы сохранения, появляющиеся при рассмотрении семимерных пространств .

Говоря о многомерности вообще, следовало бы уточнить: а нельзя ли построить алгебры большей размерности – векторной алгебры большей размерности? Ответ таков – можно! Но свойства этих алгебр совершенно иные, хотя они включают трехмерные семимерные алгебры как частный случай, как подалгебры. Свойства их видоизменяются. Например, известный закон для двойного векторного произведения будет сформулирован совершенно иначе. Это уже будет не алгебра Мальцева, это будет пятнадцатимерие – совершенно иная алгебра, а для тридцатиодномерия – вообще вопрос не изучался. Что говорить о 15-ти или 31-мерном пространстве, когда концепция семимерного пространства еще не завоевала прочной фундаментальной позиции в умах ученых. Прежде всего, нужно базироваться на анализе семимерного варианта как очередного варианта за трехмерным векторным исчислением. Надо отметить, что в векторной алгебре по своей сути не используют понятие деления, т.е. даже трехмерная алгебра – это алгебра без деления – нельзя вектору сопоставить обратный вектор, либо найти ему противоположный, т.е. найти обратный вектор. И в векторной алгебре отсутствует понятие единицы, как таковой, скалярной единицы, которую можно было бы делить на обратное число, получая вектор. Поэтому это снимает ограничения в плане того, что мы имеем только четыре алгебры с делением – четырехмерная, двухмерная, одномерная, восьмимерная. Расширение дальнейшее было бы просто невозможным. Но поскольку векторные алгебры – алгебры без деления, можно пытаться идти по этому пути дальше, строя многомерные алгебры.

Вторым аспектом является то, что уж поскольку мы работаем с алгебрами без деления, то можно использовать алгебры, которые могут быть получены путем расширения действительных чисел без использования процедуры деления. В двухмерном варианте это двойные и дуальные числа, в четырехмерном варианте – псевдокватернионы и дуальные кватернионы, в восьмимерном варианте – псевдооктанионы и дуальные октанионы. Из них той же процедурой Гамильтона можно получить трехмерные псевдоевклидовы индекса 2 и семимерные псевдоевклидовы индекса 4 векторные алгебры. Опять вопрос стоит о трехмерном и семимерном варианте. Надо отметить, что возможно также дуальное расширение, но дуальное расширение, в свою очередь, характеризуется тем, что оно не имеет изоморфной группы преобразований. Псевдоевклидовы алгебры трехмерные и семимерные, как оказывается, имеют группы, могут быть описаны групповыми свойствами преобразований этих векторных величин. В то же время дуальные величины преобразуются друг в друга с помощью матриц, квадратных матриц вырожденных, т.е. имеют определитель, не равный нулю, эти матрицы. И это резко ограничивает возможности таких алгебр для применения. Тем не менее, они могут быть построены. Но группы преобразований вырождены. Эта концепция приводит, следовательно, к расширению понятия действительного числа одномерной векторной величины, трехмерные векторные величины, дуальноевклидовы, псевдоевклидовы и собственно евклидовы и семимерные векторные величины – собственно евклидовы, дуальноевклидовы, псевдоевклидовы.

Математика таких пространств уже определена , и проблем с использованием преобразований и выражений в этих пространственных соотношениях не вызывают никаких затруднений. Единственно, несколько более сложный вариант – семимерие, нежели трехмерие. Но компьютерная техника позволяет без проблем осуществлять эти преобразования. Таким образом, мы фиксируем понятия одномерного, трехмерного и семимерного пространства, собственно евклидового, как основного из этих пространств, псевдоевклидового, как существующая возможность невырожденных преобразований пространственных с соответствующей группой псевдоевклидовых преобразований и дуальноевклидовых. Вот в результате получается набор из девяти векторных алгебр, которые можно рассматривать для физических приложений. По крайней мере, шесть величин собственно евклидовых и псевдоевклидовых, наверное немного неточно, не девять, а семь – и в результате не шесть, а четыре величины, пять величин, пять алгебр будут иметь место для возможных приложений физических. Итак, следует повторить: основа на данный момент, основным пространственным преобразованием пространственной векторной алгебры является семимерная евклидова алгебра . Это основа. Если эту основу изучить, освоить, применить, это будет уже очень немало. И позволит быстро и без проблем освоить основные векторные преобразования векторной алгебры.

Семимерное пространство характеризуется тем, что все пространственные направления совершенно одинаковые, т.е. пространство изотропно по своим свойствам. В то же время мы имеем не только понятия векторов, но и понятия изменения векторов, положения хотя бы векторов в пространстве. Следовательно, нужно оценивать характер изменения этих положений векторов в пространстве – и это уже с необходимостью приводит к применению понятия времени как скалярной величины, по которой можно осуществлять дифференцирования векторных величин. Поэтому более верной концепцией, наверное, будет рассматривать не просто семимерное пространство, а восьмимерное пространство – время. Семь совершенно идентичных пространственных координат плюс временная координата как скалярная компонента. То есть рассматривать восьмимерный радиус-вектор Ctr , где r – семикомпонентная величина, а t – время однокомпонентная скалярная величина. Точно так же это проделано в четырехмерном пространстве-времени Минковского и поэтому не вызывает никаких нареканий и отрицательных соображений и эмоций. Восьмимерное пространство-время связывает так же, как частная теория относительности, время с пространственными соотношениями. Имеет место относительность понятий пространственных величин и временных величин. Имеют место те же преобразования Лоренца, если использовать не YZ , равный нулю, а все шесть остальных компонентов, кроме первой, равными нулю. То есть частная теория относительности четырехмерного пространства-времени Минковского является просто частным случаем преобразования восьмимерного пространства-времени. Вот, собственно, наверное, и все, что следовало бы отметить. Единственное, стоило дополнить или повторить, что в семимерном пространстве имеют место совершенно новые законы сохранения величин, а в восьмимерном пространстве-времени точно так же появляются эти величины, как сохраняющиеся фундаментальные величины и варианты при переходе от одной системы восьмимерного пространства-времени к другой – другой системе отсчета.

Что еще стоило бы отметить? При использовании собственно евклидового семимерного пространства получается восьмимерное пространство- время индекса 1, по сути дела, либо некоторые авторы, наоборот, берут три отрицательные компоненты радиус-вектора, поэтому можно говорить об индексе 3, потому что квадрат скорости, либо квадрат радиуса-вектора определяется суммой квадратов компонентов в собственно евклидовом пространстве. В семимерном пространстве практически эта тенденция сохранена целиком и полностью, если использовать собственно евклидову векторную алгебру. Однако семимерное пространство может быть построено также с применением семимерной псевдоевклидовой векторной алгебры индекса 4, и это говорит о том, что квадрат интервала радиуса-вектора, квадрат радиуса-вектора лучше сказать, квадрат модуля радиуса-вектора может быть не только положительным, но также и нулем и даже отрицательной величиной, квадрат модуля радиус-вектора семимерного псевдоевклидового пространства. Точно так речь может вестись о квадрате любого вектора, в частности вектора скорости. Поэтому понятие скорости псевдоевклидовой семимерной векторной алгебры совершенно иное, нежели в семимерном собственно евклидовом пространстве. И это приводит к серьезнейшим изменениям в физическом плане, если строить физическую теорию на базе таких алгебр. В математическом плане нареканий нет, и алгебра может быть фундаментом для построения многомерной физики и, без проблем, многомерная физика строится. Сложнее восприятие этих величин. То есть скорость – величина, в данном случае скорость света, как фундаментальная величина может иметь место только как понятие скорости распространения электромагнитных волн. На базе восьмимерной псевдоевклидовой алгебры с применением семимерной псевдоевклидовой алгебры, скорость может быть не только положительной величиной, но и отрицательной и нулевой.

Это требует в свою очередь дополнительных рассмотрений таких физических пространств, осознания их наличия в действительном мире и попыткой объяснить теорию полей не только электромагнитных, но других, в частности гравитационных, слабых, сильных. Имеющиеся в настоящий момент векторные многомерные алгебры позволяют сделать более глубокий анализ, нежели наличие только трехмерной векторной алгебры и причем только собственно евклидовой векторной алгебры Гамильтона – Грассмана.

Библиографический список

1. Готт, В.С. Пространство и время микромира / В.С. Готт. – М.: Изд-во «Знание», 1964. – 40 с.

2. Коротков, А.В. Элементы семимерного векторного исчисления. Алгебра. Геометрия. Теория поля / А.В. Коротков. – Новочеркасск: Набла, 1996. – 244 с.

3. Румер, Ю.Б. Принципы сохранения и свойства пространства и времени / Ю.Б. Румер // Пространство, время, движение. – М.: Изд-во «Наука», 1971. – С. 107-125.

) более трёх. Обычное евклидово пространство, изучаемое в элементарной геометрии, трёхмерно; плоскости - двумерны, прямые - одномерны. Возникновение понятия М. п. связано с процессом обобщения самого предмета геометрии. В основе этого процесса лежит открытие отношений и форм, сходных с пространственными, для многочисленных классов математических объектов (зачастую не имеющих геометрического характера). В ходе этого процесса постепенно выкристаллизовалась идея абстрактного математического пространства (См. Пространство) как системы элементов любой природы, между которыми установлены отношения, сходные с теми или иными важными отношениями между точками обычного пространства. Наиболее общее выражение эта идея нашла в таких понятиях, как Топологическое пространство и, в частности, Метрическое пространство .

Простейшими М. п. являются n -мерные евклидовы пространства (См. Евклидово пространство), где n может быть любым натуральным числом. Подобно тому, как положение точки обычного евклидова пространства определяется заданием трёх её прямоугольных координат, «точка» n -мерного евклидова пространства задаётся n «координатами» x 1 , x 2 , ..., x n (которые могут принимать любые действительные значения); расстояние ρ между двумя точками M (x 1 , x 2 , ..., x n ) и М" (у 1 , y 2 , ..., y n) определяется формулой

аналогичной формуле расстояния между двумя точками обычного евклидова пространства. С сохранением такой же аналогии обобщаются на случай n -мерного пространства и другие геометрические понятия. Так, в М. п. рассматриваются не только двумерные плоскости, но и k -мерные плоскости (k n), которые, как и в обычном евклидовом пространстве, определяются линейными уравнениями (или системами таких уравнений).

Понятие n -мерного евклидова пространства имеет важные применения в теории функций многих переменных, позволяя трактовать функцию n переменных как функцию точки этого пространства и тем самым применять геометрические представления и методы к изучению функций любого числа переменных (а не только одного, двух или трёх). Это и было главным стимулом к оформлению понятия n

Важную роль играют и другие М. п. Так, при изложении физического принципа относительности пользуются четырёхмерным пространством, элементами которого являются т. н. «мировые точки». При этом в понятии «мировой точки» (в отличие от точки обычного пространства) объединяется определённое положение в пространстве с определённым положением во времени (поэтому «мировые точки» и задаются четырьмя координатами вместо трёх). Квадратом «расстояния» между «мировыми точками» М’ (х’, y’, z’, t’ ) и М’’ (х’’, y’’, z’’, t’’ ) (где первые три «координаты» - пространственные, а четвёртая - временная) естественно считать здесь выражение

(M’ M’’ ) 2 = (x’ - x’’ ) 2 + (y’ - y’’ ) 2 + (z’ - z’’ ) 2 - c 2 (t’ - t’’ ) 2 ,

где с - скорость света. Отрицательность последнего члена делает это пространство «псевдоевклидовым».

Вообще n -мерным пространством называется топологическое пространство, которое в каждой своей точке имеет размерность n . В наиболее важных случаях это означает, что каждая точка обладает окрестностью, гомеоморфной открытому шару n -мерного евклидова пространства.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Многомерное пространство" в других словарях:

    Пространство, имеющее число измерений (размерность) более трех. Реальное пространство трехмерно. Через каждую его точку можно провести три взаимно перпендикулярные прямые, но уже нельзя провести четыре. Если принять указанные три прямые за оси… …

    Энциклопедический словарь

    многомерное пространство - daugiamatė erdvė statusas T sritis fizika atitikmenys: angl. multidimensional space vok. mehrdimensionaler Raum, m rus. многомерное пространство, n pranc. espace à dimensions multiples, m; espace multidimentionnel, m … Fizikos terminų žodynas

    Пространство, имеющее число измерений более трёх. Реальное пространство имеет 3 измерения, поверхность 2, линия 1. Обычная пространственная интуиция, человека ограничена тремя измерениями. Введение понятия о пространствах 4 и большего числа… … Большой энциклопедический политехнический словарь

    Пространство, имеющее число измерений (размерность) более трёх. Реальное пространство трёхмерно. Через каждую его точку можно провести три взаимно перпендикулярные прямые, но уже нельзя провести четыре. Если принять указанные три прямые за оси… … Естествознание. Энциклопедический словарь

    Старшие размерности или пространства старших размерностей термин, используемый в топологии многообразий для многообразий размерности. В старших размерностях работают важные технические приёмы, связанные с трюком Уитни (например теорема об h… … Википедия

    В математике множество объектов, между которыми установлены отношения, сходные по своей структуре с обычными пространственными отношениями типа окрестности, расстояния и т. д. Исторически первое и важнейшее математическое пространство евклидово… … Большой Энциклопедический словарь

    И ВРЕМЯ философские категории, посредством которых обозначаются формы бытия вещей и явлений, которые отражают, с одной стороны, их со бытие, сосуществование (в П.), с другой процессы смены их друг другом (во В.), продолжительность их… … Новейший философский словарь

    А; ср. 1. Филос. Одна из основных форм существования материи, характеризующаяся протяжённостью и объёмом. Движение материи в пространстве и во времени. 2. Неограниченная протяжённость во всех измерениях, направлениях. Бесконечное п. Воздушное п.… … Энциклопедический словарь

    Многомерное коммуникационное пространство - одно из основных понятий концепций многомерного пространства и рубежной коммуникативности. Результат стратификации разномасштабных процессов в природе и обществе, образующих рубежное энергоизбыточное напряжение (созидательное или разрушительное) … Геоэкономический словарь-справочник

многомерное пространство

пространство, имеющее число измерений (размерность) более трех. Реальное пространство трехмерно. Через каждую его точку можно провести три взаимно перпендикулярные прямые, но уже нельзя провести четыре. Если принять указанные три прямые за оси координат, то положение каждой точки пространства определится заданием трех действительных чисел - ее прямоугольных координат. Обобщая это положение, называют n-мерным евклидовым пространством совокупность всевозможных систем из n чисел "точек" этого пространства.

Многомерное пространство

пространство, имеющее число измерений (размерность) более трёх. Обычное евклидово пространство, изучаемое в элементарной геометрии, трёхмерно; плоскости ≈ двумерны, прямые ≈ одномерны. Возникновение понятия М. п. связано с процессом обобщения самого предмета геометрии. В основе этого процесса лежит открытие отношений и форм, сходных с пространственными, для многочисленных классов математических объектов (зачастую не имеющих геометрического характера). В ходе этого процесса постепенно выкристаллизовалась идея абстрактного математического пространства как системы элементов любой природы, между которыми установлены отношения, сходные с теми или иными важными отношениями между точками обычного пространства. Наиболее общее выражение эта идея нашла в таких понятиях, как топологическое пространство и, в частности, метрическое пространство .

Простейшими М. п. являются n-мерные евклидовы пространства, где n может быть любым натуральным числом. Подобно тому, как положение точки обычного евклидова пространства определяется заданием трёх её прямоугольных координат, «точка» n-мерного евклидова пространства задаётся n «координатами» x1, x2, ..., xn (которые могут принимать любые действительные значения); расстояние r между двумя точками M(x1, x2, ..., xn) и М"(у1, y2, ..., yn) определяется формулой

аналогичной формуле расстояния между двумя точками обычного евклидова пространства. С сохранением такой же аналогии обобщаются на случай n-мерного пространства и другие геометрические понятия. Так, в М. п. рассматриваются не только двумерные плоскости, но и k-мерные плоскости (k < n), которые, как и в обычном евклидовом пространстве, определяются линейными уравнениями (или системами таких уравнений).

Понятие n-мерного евклидова пространства имеет важные применения в теории функций многих переменных, позволяя трактовать функцию n переменных как функцию точки этого пространства и тем самым применять геометрические представления и методы к изучению функций любого числа переменных (а не только одного, двух или трёх). Это и было главным стимулом к оформлению понятия n-мерного евклидова пространства.

Важную роль играют и другие М. п. Так, при изложении физического принципа относительности пользуются четырёхмерным пространством, элементами которого являются т. н. «мировые точки». При этом в понятии «мировой точки» (в отличие от точки обычного пространства) объединяется определённое положение в пространстве с определённым положением во времени (поэтому «мировые точки» и задаются четырьмя координатами вместо трёх). Квадратом «расстояния» между «мировыми точками» М▓(х▓, y▓, z▓, t▓) и М▓▓(х▓▓, y▓▓, z▓▓, t▓▓) (где первые три «координаты» ≈ пространственные, а четвёртая ≈ временная) естественно считать здесь выражение

(M▓ M▓▓)2 = (x▓ - x▓▓)2 + (y▓ ≈ y▓▓)2 + (z▓ ≈ z▓▓)2 ≈ c2(t▓ ≈ t▓▓)2,

где с ≈ скорость света. Отрицательность последнего члена делает это пространство «псевдоевклидовым».

Вообще n-мерным пространством называется топологическое пространство, которое в каждой своей точке имеет размерность n. В наиболее важных случаях это означает, что каждая точка обладает окрестностью, гомеоморфной открытому шару n-мерного евклидова пространства.

Подробнее о развитии понятия М. п., геометрии М. п., а также лит. см. в ст. Геометрия.

Многомерные пространства - миф или реальность? Большинству из нас, или, возможно, всем нам невозможно представить мир, состоящий из более чем трех пространственных измерений. Правильно ли утверждение, что такой мир не может существовать? Или просто человеческий разум не способен вообразить дополнительные измерения - измерения, которые могут оказаться такими же реальными, как и другие вещи, которые мы не можем увидеть?

Мы достаточно часто слышим что-нибудь вроде «трехмерное пространство», или «многомерное пространство», или «четырехмерное пространство». Возможно, вы знаете, что мы живем в четырехмерном пространстве-времени. Что это означает и почему это интересно, почему математики и не только математики изучают такие пространства?

Илья Щуров - кандидат физико-математических наук, доцент кафедры высшей математики НИУ ВШЭ.

Jason Hise - Physics programmer at Ready at Dawn Studios, 4D geometry enthusiast. Автор анимированных моделей, представленных в данной статье.

ashgrowen - пикабушник, проиллюстрировавший в этой статье построение тессеракта и гиперкуба.

Давайте начнем с простого - начнем с одномерного пространства . Представим себе, что у нас есть город, который расположен вдоль дороги, и в этом городе есть только одна улица. Тогда мы можем каждый дом на этой улице закодировать одним числом - у дома есть номер, и этот номер однозначно определяет, какой дом имеется в виду. Люди, которые живут в таком городе, - можно считать, что они живут в таком одномерном пространстве. Жить в одномерном пространстве довольно скучно, и люди обычно живут не в одномерном пространстве.

Например, если мы говорим про города, то можно перейти от одномерного пространства к двумерному. Примером двумерного пространства является плоскость, а если мы продолжим нашу аналогию с городами, то это город, в котором можно расчертить улицы, допустим, перпендикулярно друг другу, как это сделано в Нью-Йорке, в центре Нью-Йорка. Там есть «стрит» и авеню, каждая из которых имеет свой номер, и вы можете задавать местоположение на плоскости, задавать два числа. Опять же, все мы знаем декартову систему координат, знакомую со школы, - каждая точка задается двумя числами. Это пример двумерного пространства .

Но если мы говорим про город типа центра Нью-Йорка, то на самом деле он является трехмерным пространством, потому что вам мало задать, например, конкретный дом, пусть даже вы зададите его пересечением какой-нибудь «стрит» и какой-нибудь авеню, - вам нужно будет задать еще и этаж, на котором находится нужная вам квартира. Это даст вам третье измерение - высоту. У вас получится трехмерное пространство , в котором каждая точка задается тремя числами.

Вопрос: что такое четырехмерное пространство ? Представить его себе не так-то просто, но можно думать о том, что это пространство, в котором каждая точка задается четырьмя числами. На самом деле мы с вами действительно живем в четырехмерном пространстве-времени, потому что события нашей жизни кодируются как раз четырьмя числами - помимо положения в пространстве, есть еще и время. Например, если вы назначаете свидание, то вы можете сделать это так: вы можете указать три числа, которые будут соответствовать точке в пространстве, и обязательно указать время, которое обычно задается в часах, минутах, секундах, но можно было бы закодировать его одним числом. Например, количество секунд, прошедших с определенной даты, - это тоже одно число. Таким образом получается четырехмерное пространство-время.

Представить себе геометрию этого четырехмерного пространства-времени не очень просто. Например, мы с вами привыкли к тому, что в нашем обычном трехмерном пространстве две плоскости могут пересекаться по прямой либо быть параллельными. Но не бывает такого, чтобы две плоскости пересекались в одной точке. Две прямые могут пересечься в одной точке, а на плоскости не могут в трехмерном пространстве. А в четырехмерном пространстве две плоскости могут и чаще всего пересекаются в одной точке. Можно представлять себе, хотя это уже совсем сложно, пространство большей размерности. На самом деле математики, когда работают с пространствами высокой размерности, чаще всего говорят просто: допустим, пятимерное пространство - это пространство, в котором точка задается пятью числами, пятью координатами. Безусловно, математики разработали разные методы, которые позволяют понимать что-то о геометрии такого пространства.

Почему это важно? Зачем понадобились такие пространства? Во-первых, четырехмерное пространство нам важно, потому что оно применяется в физике, потому что мы в нем живем. А зачем нужны пространства более высоких измерений? Давайте представим себе, что мы изучаем какие-то объекты, которые обладают большим количеством параметров. Например, мы изучаем страны, и у каждой страны есть территория, количество населения, внутренний валовой продукт, количество городов, какие-нибудь коэффициенты, индексы, что-нибудь такое. Мы можем представлять себе каждую страну в виде одной точки в каком-то пространстве достаточно высокой размерности. И оказывается, что с математической точки зрения это правильный способ об этом думать.

В частности, переход к геометрии многомерного пространства позволяет анализировать разные сложные объекты, обладающие большим количеством параметров.


Для того чтобы изучать такие объекты, используются методы, разработанные в науке, которая называется линейная алгебра. Несмотря на то, что она алгебра, на самом деле это наука о геометрии многомерных пространств. Конечно, поскольку представить их себе довольно тяжело, математики используют формулы, для того чтобы как раз изучать такие пространства.

Представить себе четырех-, пяти- или шестимерное пространство довольно сложно, но математики не боятся трудностей, и им мало даже стомерных пространств. Математики придумали бесконечномерное пространство - пространство, содержащее бесконечное количество измерений. В качестве примера такого пространства можно привести пространство всех возможных функций, заданных на отрезке или прямой.

Оказывается, что методы, которые были разработаны для конечномерных пространств, во многом переносятся и на случаи чрезвычайно сложных с точки зрения просто попытки их все представить пространств.

У линейной алгебры есть многочисленные приложения не только в математике, но и в самых разных науках, начиная c физики и заканчивая, например, экономикой или политической наукой. В частности, линейная алгебра является основой для многомерной статистики, которая как раз используется для вычленения связей между различными параметрами в каких-то массивах данных. В частности, популярный ныне термин Big Data зачастую связывается с решением задач по обработке данных, которые представляются именно большим количеством точек в пространстве какой-то конечной размерности. Чаще всего такие задачи можно переформулировать и разумно воспринимать именно в геометрических терминах.

Со школьных лет математика разделяется на алгебру и геометрию. Но на самом деле, если мы задумаемся о том, как устроена современная математика, то мы поймем, что те задачи, которые сейчас решаются, в частности, с применением методов линейной алгебры, на самом деле являются очень отдаленным продолжением тех задач, над которыми задумывались многие тысячи лет назад, например Пифагор или Евклид , разрабатывая ту самую школьную геометрию, которая сейчас есть в любом школьном учебнике. Удивительно, что задача по анализу больших данных оказывается в некотором смысле потомком, казалось бы, совсем бессмысленных - по крайней мере с практической точки зрения - упражнений древних греков по рисованию прямых или окружностей на плоскости или мысленному проведению прямых или плоскостей в трехмерном пространстве.

Что такое четырёхмерное пространство («4D»)?

Тессерракт - четырехмерный куб

Всем знакомо сокращение 3D , означающее «трёхмерный» (буква D - от слова dimension - измерение ). Например, выбирая в кинотеатре фильм с пометкой 3D, мы точно знаем: для просмотра придётся надеть специальные очки, но зато картинка будет не плоской, а объёмной. А что такое 4D? Существует ли «четырёхмерное пространство» в реальности? И можно ли выйти в «четвёртое измерение» ?

Чтобы ответить на эти вопросы, начнём с самого простого геометрического объекта - точки. Точка нульмерна. У неё нет ни длины, ни ширины, ни высоты.

Сдвинем теперь точку по прямой на некоторое расстояние. Допустим, что наша точка - остриё карандаша; когда мы её сдвинули, она прочертила отрезок. У отрезка есть длина, и больше никаких измерений: он одномерен. Отрезок «живёт» на прямой; прямая является одномерным пространством.

Тессеракт - четырехмерный куб

Возьмём теперь отрезок и попробуем его сдвинуть так, как раньше точку. Можно представить себе, что наш отрезок - это основание широкой и очень тонкой кисти. Если мы выйдем за пределы прямой и будем двигаться в перпендикулярном направлении, получится прямоугольник. У прямоугольника есть два измерения - ширина и высота. Прямоугольник лежит в некоторой плоскости. Плоскость - это двумерное пространство (2D), на ней можно ввести двумерную систему координат - каждой точке будет соответствовать пара чисел. (Например, декартова система координат на школьной доске или широта и долгота на географической карте.).

Если сдвинуть прямоугольник в направлении, перпендикулярном плоскости, в которой он лежит, получится «кирпичик» (прямоугольный параллелепипед) - трёхмерный объект, у которого есть длина, ширина и высота; он расположен в трёхмерном пространстве, в таком, в каком живём мы с вами. Поэтому мы хорошо представляем себе, как выглядят трёхмерные объекты. Но если бы мы жили в двумерном пространстве - на плоскости, - нам пришлось бы изрядно напрячь воображение, чтобы представить себе, как можно сдвинуть прямоугольник, чтобы он вышел из той плоскости, в которой мы живём.

Тессеракт - четырехмерный куб

Представить себе четырёхмерное пространство для нас также довольно непросто, хотя очень легко описать математически. Трёхмерное пространство - это пространство, в котором положение точки задаётся тремя числами (например, положение самолёта задаётся долготой, широтой и высотой над уровнем моря). В четырёхмерном же пространстве точке соответствует четвёрка чисел-координат. «Четырёхмерный кирпич» получается сдвигом обычного кирпичика вдоль какого-то направления, не лежащего в нашем трёхмерном пространстве; он имеет четыре измерения.

На самом деле мы сталкиваемся с четырёхмерным пространством ежедневно: например, назначая свидание, мы указываем не только место встречи (его можно задать тройкой чисел), но и время (его можно задавать одним числом, например количеством секунд, прошедших с определенной даты). Если посмотреть на настоящий кирпич, у него есть не только длина, ширина и высота, но ещё и протяженность во времени - от момента создания до момента разрушения.

Физик скажет, что мы живём не просто в пространстве, а в пространстве-времени; математик добавит, что оно четырёхмерно. Так что четвёртое измерение ближе, чем кажется.

Представление других измерений

От 2D к 3D

Ранняя попытка объяснить концепцию дополнительных измерений появилась в 1884 году с публикацией романа о плоской земле Эдвина А. Эббота «Флатландия: романтика множества измерений «. Действие в романе разворачивается в плоском мире, называемом «Флатландия», а повествование ведется от лица жителя этого мира — квадрата. Однажды во сне квадрат оказывается в одномерном мире — Лайнландии, жители которой (треугольники и другие двумерные объекты представлены в виде линий) и пытается объяснить правителю этого мира существование 2-го измерения, однако, приходит к выводу о том, что его невозможно заставить выйти за рамки мышления и представления только прямых линий.

Квадрат описывает его мир как плоскость, населенную линиями, кругами, квадратами, треугольниками и пятиугольниками.

Однажды перед квадратом появляется шар, но его суть он не может постичь, так как квадрат в своем мире может видеть только срез сферы, только форму двумерного круга.

Сфера пытается объяснить квадрату устройство трехмерного мира, но квадрат понимает только понятия «вверх/вниз» и «лево/право», он не способен постичь понятия «вперед/назад».

Только после того, как сфера вытащит квадрат из его двумерного мира в свой трехмерный мир, он наконец поймет концепцию трех измерений. С этой новой точки зрения квадрат становится способен видеть формы своих соотечественников.

Квадрат, вооруженный своим новым знанием, начинает осознавать возможность существования четвертого измерения. Также он приходит к мысли, что число пространственных измерений не может быть ограничено. Стремясь убедить сферу в этой возможности, квадрат использует ту же логику, что и сфера, аргументирующая существование трех измерений. Но теперь из них двоих становится «близорукой» сфера, которая не может понять этого и не принимает аргументы и доводы квадрата — так же, как большинство из нас «сфер» сегодня не принимают идею дополнительных измерений.

Рецензия на книгу Флатландия

Принимая во внимание исключительность как жанра, который при некоторой фантазии и существовании иных его представителей, можно было бы назвать математическим романом, так и самой книги, её не хочется сильно ругать. Тем не менее, похвалы здесь заслуживает только лишь непривычность подачи, по духу близкая произведениям Льюиса Керрола, однако, в отличие от него, имеющая гораздо меньше точек соприкосновения с реальной жизнью. Данная книга, как верно отмечено в предисловии к изданию, не похожа ни на одну популяризацию, читателю, однако, не вполне ясно, по какой причине её сравнивают с популяризациями, потому как, хотя математические истины в ней, безусловно, затрагиваются, какой бы то ни было популяризацией книгу определённо считать невозможно. И вот почему: Перед вами уникальный пример объединения художественного вымысла с математическими идеями. И поклоннику математики, любящему читать, задумка изначально кажется замечательной: подобно математическим постулатам, ввести в рассмотрение ряд абстрактных объектов, наделить их определёнными свойствами, задать правила игры в описанном пространстве, а после, подражая опять же мысли исследователя, наблюдающего взаимодействия этих умозрительных объектов, проследить за их трансформацией. Но, так как книга всё же художественная, усилиям воли учёного места здесь не находится, поэтому для самодостаточности представленного на всеобщее обозрение мира объекты здесь наделяются сознанием и мотивацией для каких-либо взаимодействий друг с другом, после чего в прежде абстрактный мир оторванных от повседневной жизни чистых идей приносятся социальные взаимодействия с целым ворохом проблем, всегда сопутствующих всяким взаимоотношениям. Всевозможные трения, возникающие в книге на социальной почве, по мнению зрителя совершенно не нужны в книге: они практически не раскрыты и не могут восприниматься в серьезе, и в то же время отвлекают читателя от истинно тех вещей, ради которых написана книга. Даже принимая во внимания заверения обоих авторов о неспешности повествования, якобы более комфортную для читателя при приобретении каких-либо знаний (именно здесь приводится сравнение с популяризациями), зрителю темп повествования показался чрезвычайно затянутым и медлительным, а повторение одного и того же объяснения по несколько раз одними и теми же словами заставило усомниться в том, что рассказчик адекватно оценивает его умственным способности. И в конечном счёте неясно, для кого эта книга. Непривычным к математике людям описание в общем-то интересных явление в столь вольной форме вряд ли принесёт удовольствие, знакомым же с математикой ближе будет гораздо приятнее взять в руки качественную популяризацию, где величие и красоту математики не разбавляют плоскими сказками.

От 3D к 4D

Нам сложно принять эту идею, потому что, когда мы пытаемся представить даже одно дополнительное пространственное измерение — мы упираемся в кирпичную стену понимания. Похоже, что наш разум не может выйти за эти границы.

Представьте себе, например, что вы находитесь в центре пустой сферы. Расстояние между вами и каждой точкой на поверхности сферы равно. Теперь попробуйте двигаться в направлении, которое позволяет вам отойти от всех точек на поверхности сферы, сохраняя при этом равноудаленность. Вы не сможете этого сделать..

Житель Флатландии столкнулся бы с такой же проблемой, если бы он находился в центре круга. В его двумерном мире он не может находиться в центре круга и двигаться в направлении, которое позволяет ему оставаться равноудаленными каждой точке окружности круга, если только он не перейдет в третье измерение. Увы, у нас нет проводника в четырехмерное пространство как в романе Эббота, чтобы показать нам путь к 4D.

Что такое гиперкуб? Построение тессеракта

Виды гиперкубов и их названия

1. Точка - нулевое измерение

2. Отрезок - одномерное пространство

3. Квадрат - двумерное пространство (2D)

4. Куб - трёхмерное пространство (3D)

5. Тессеракт - четырёхмерное пространство (4D)

Гиперкуб — это обобщающее название куба в производном числе измерений. Всего измерений десять, плюс точка (нулевое измерение).

Соответственно, существует одиннадцать видов гиперкуба. Рассмотрим построение тессеракта — гиперкуба четвертого измерения:

Для начала построим точку А (рис. 1):

После, соединим ее с точкой В. Получим вектор АВ (рис. 2):

Построим вектор, параллельный вектору АВ, и назовем его CD. Соединив начала и концы векторов, получим квадрат ABDC (рис. 3):

Теперь построим еще один квадрат A1B1D1C1, который лежит в параллельной плоскости. Соединив точки подобным образом, получим куб (рис. 4):

У нас есть куб. Представьте, что положение куба в трехмерном пространстве с течением времени изменилось. Зафиксируем его новое местоположение (рис 5.):

А теперь, мы проводим вектора, которые соединяют местоположение точек в прошлом и в настоящем. Получаем тессеракт (рис. 6):

Рис. 6 Тессеракт (построение)

Подобным образом строятся остальные гиперкубы, конечно же учитывается смысл пространства, в котором гиперкуб находится.

Как насчет 10D?

В 1919 году польский математик Теодор Калуца предположил, что существование четвертого пространственного измерения может увязать между собой общую теорию относительности и электромагнитную теорию. Идея, впоследствии усовершенствованная шведским математиком Оскаром Кляйном , заключалась в том, что пространство состояло как из «расширенных» измерений, так и из «свернутых» измерений. Расширенные измерения — это три пространственных измерения, с которыми мы знакомы, и свернутое измерение находится глубоко в расширенных размерах. Эксперименты позже показали, что свернутое измерение Калуцы и Кляйна не объединило общую теорию относительности и электромагнитную теорию, как это первоначально предполагалось, но спустя десятилетия теоретики теории струн нашли эту идею полезной, даже необходимой.

Математика, используемая в теории суперструн, требует не менее 10 измерений. То есть для уравнений, описывающих теорию суперструн и для того чтобы связать общую теорию относительности с квантовой механикой, для объяснения природы частиц, для объединения сил и т. д. — необходимо использовать дополнительные измерения. Эти измерения, по мнению теоретиков струн, завернуты в свернутое пространство, изначально описанное Калуцей и Кляйном.

Круги представляют собой дополнительный пространственный размер, свернутый в каждую точку нашего знакомого трехмерного пространства. │ WGBH / NOVA

Чтобы расширить скрученное пространство, чтобы включить эти добавленные размеры, представьте, что круги Калуцы-Клейна заменяются сферами. Вместо одного добавленного измерения мы имеем два, если рассматривать только поверхности сфер и три, если учесть пространство внутри сферы. Получилось всего шесть измерений. Так где же другие, которые требует теория суперструн?

Оказывается, что до того, как появилась теория суперструн, два математика Эудженио Калаби из Университета Пенсильвании и Шин-Тунг Яу из Гарвардского университета описали шестимерные геометрические формы. Если мы заменим сферы в скрученном пространстве этими формами Калаби-Яу, мы получим 10 измерений: три пространственных, а также шестимерные фигуры Калаби-Яу .

Шестимерные формы Калаби-Яу могут объяснять дополнительные размеры, требуемые теорией суперструн. │ WGBH / NOVА

Приверженцы теории струн делают ставку на то, что дополнительные измерения действительно существуют. На самом деле, уравнения, описывающие теорию суперструн, предполагают вселенную с не менее чем 10 измерениями. Но даже физикам, которые все время думают о дополнительных пространственных измерениях сложно описать как они могут выглядеть, или как люди могли бы приблизиться к их пониманию.

Если теория суперструн будет доказана и идея мира, состоящего из 10 или более измерений, подтвердится, то появится ли когда-нибудь объяснение или визуальное представление более высоких измерений, которые сможет постичь человеческий разум? Ответ на этот вопрос навсегда может стать отрицательным, если только какая-то четырехмерная жизненная форма не «вытащит» нас из нашего трехмерного мира и не даст нам увидеть мир с ее точки зрения.



error: